OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 16, Iss. 2 — Jan. 21, 2008
  • pp: 579–591

Bend-insensitive lasing characteristics of single-mode, large-mode-area Ytterbium-doped photonic crystal fiber

K. Iizawa, S.K. Varshney, Y. Tsuchida, K. Saitoh, and M. Koshiba  »View Author Affiliations

Optics Express, Vol. 16, Issue 2, pp. 579-591 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (1866 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The bend-insensitive lasing characteristics of a newly designed ytterbium-doped photonic crystal fiber (YPCF) are evaluated numerically. The designed YPCF remains single-mode and possesses large-mode-area of 1400 µm2 at 1064 nm wavelength with the beam quality factor (M2) of 1.15, suggesting a diffraction-limited and continuous-wave lasing operation. The doped-region size is optimized for maximum conversion efficiency and it is found through numerical simulations that the doped radius should be more than 21 µm. The “mode expansion”, which is the self-expansion of the fundamental mode within the doped region with wavelength increments on bending the fiber, is the basic physical mechanism to give the bend-insensitive lasing performances of YPCF. It leads to an unusual variation of overlap factor when the wavelength is increased. A 41 cm long piece of YPCF demonstrates more than 83% of slope efficiency with 75% of conversion efficiency when pumped with a 975 nm laser source delivering an input power of 1 W.

© 2008 Optical Society of America

OCIS Codes
(060.2430) Fiber optics and optical communications : Fibers, single-mode
(140.3615) Lasers and laser optics : Lasers, ytterbium
(060.5295) Fiber optics and optical communications : Photonic crystal fibers
(060.3510) Fiber optics and optical communications : Lasers, fiber

ToC Category:
Fiber Optics and Optical Communications

Original Manuscript: October 29, 2007
Revised Manuscript: December 24, 2007
Manuscript Accepted: December 25, 2007
Published: January 7, 2008

K. Iizawa, S. K. Varshney, Y. Tsuchida, K. Saitoh, and M. Koshiba, "Bend-insensitive lasing characteristics of singlemode, large-mode-area Ytterbium-doped photonic crystal fiber," Opt. Express 16, 579-591 (2008)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. H.M. Pask, R.J. Carman, D.C. Hanna, A.C. Tropper, C.J. Mackechnie, P.R. Barber, and J.M. Dawes, "Ytterbium-doped silica fiber lasers: versatile sources for the 1-1.2 μm region," IEEE J. Sel. Top. Quantum Electron. 1, 2-13 (1995). [CrossRef]
  2. P.St.J. Russell, "Photonic crystal fiber," Science 288, 358-362 (2003). [CrossRef]
  3. J.C. Knight, "Photonic crystal fibers and fiber lasers," J. Opt. Soc. Am. B 24, 1661-1668 (2007). [CrossRef]
  4. T.A. Birks, J.C. Knight, and P.St.J. Russell, "Endlessly single-mode photonic crystal fiber," Opt. Lett. 22, 961-963 (1997). [CrossRef] [PubMed]
  5. A. Bjarklev, J. Broeng, and A.S. Bjarklev, Photonic Crystal Fibres, (Kluwer Academic, The Netherlands, 2003). [CrossRef]
  6. A. Cucinotta, F. Poli, and S. Selleri, "Design of erbium-doped triangular photonic crystal fiber based amplifiers," IEEE Photon. Technol. Lett. 16, 2027-2029 (2004). [CrossRef]
  7. S. Hilaire, D. Pagnoux, P. Roy, and S , Fevrier, "Numerical study of single-mode Er-doped microstructured fibers: influence of geometrical parameters on amplifier performances," Opt. Express 14, 10865-10877 (2006). [CrossRef] [PubMed]
  8. W.J. Wadsworth, J.C. Knight, W.H. Reeves, and P.St.J. Russell," Yb3+-doped photonic crystal fiber laser," Electron. Lett. 36, 1452-1453 (2000). [CrossRef]
  9. F. Furusawa, A. Malinowski, J.H.V. Price, T.M. Monro, J.K. Sahu, J. Nilsson, and D.J. Richardson, "Cladding pumped ytterbium-doped fiber laser with holey inner and outer cladding," Opt. Express 9, 714-720 (2001). [CrossRef] [PubMed]
  10. W. Wadsworth, R. Percival, G. Bouwmans, J. Knight, and P. Russell, " High power air-clad photonic crystal fiber laser," Opt. Express 11, 48-53, 2003. [CrossRef] [PubMed]
  11. J. Limpert, T. Schreiber, S. Nolte, H. Zelmer, T. Tunnermann, R. Iliew, F. Lederer, J. Broeng, G. Vienne, A. Petersson, and C. Jakobsen, "High power air-clad large mode area photonic crystal fiber laser," Opt. Express 11, 818-823 (2003). [CrossRef] [PubMed]
  12. L. Dong, J. Li, and X. Peng, "Bend-resistant fundamental mode operation in ytterbium-doped leakage channel fibers with effective areas up to 3160 μm2," Opt. Express 14, 11512-11518 (2006). [CrossRef] [PubMed]
  13. X. Peng and L. Dong, "Fundamental-mode operation in polarization-maintaining ytterbium-doped fiber with an effective area of 1400 μm2," Opt. Lett. 32, 358-360 (2007). [CrossRef] [PubMed]
  14. Y. Tsuchida, K. Saitoh, and M. Koshiba, "Design of single-mode holey fibers with large-mode-area and low bending losses: the significance of the ring-core region," Opt. Express 15, 1794-1803 (2007). [CrossRef] [PubMed]
  15. K. Saitoh and M. Koshiba, "Full-vectorial imaginary-distance beam propagation method based on finite element scheme: Application to photonic crystal fibers," IEEE J. Quantum Electron. 33, 927-933 (2002). [CrossRef]
  16. K. Kakihara, N. Kono, K. Saitoh, and M. Koshiba, "Full-vectorial finite element method in a cylindrical coordinate system for loss analysis of photonic wire bends," Opt. Express 14, 11128-11141 (2006). [CrossRef] [PubMed]
  17. R. Paschotta, J. Nilsson, A.C. Tropper, and D. D. Hanna, "Ytterbium-doped fiber amplifiers," IEEE J. Quantum Electron. 33, 1049-1056 (1997). [CrossRef]
  18. www.mathworks.com
  19. C. Barnard, P. Myslinski, J. Chrostowski, and M. Kavehrad, "Analytical model for rare-earth-doped fiber amplifiers and lasers," IEEE J. Quantum Electron. 30, 1817-1830 (1994). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited