OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 16, Iss. 2 — Jan. 21, 2008
  • pp: 613–627

Electro-optic Charon polymeric microring modulators

Daniele Rezzonico, Mojca Jazbinsek, Andrea Guarino, O-Pil Kwon, and Peter Günter  »View Author Affiliations


Optics Express, Vol. 16, Issue 2, pp. 613-627 (2008)
http://dx.doi.org/10.1364/OE.16.000613


View Full Text Article

Enhanced HTML    Acrobat PDF (719 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We propose and demonstrate a new type of electro-optic polymeric microring resonators, where the shape of the transmission spectrum is controlled by losses and phase shifts induced at the asymmetric directional coupler between the cavity and the bus waveguide. The theoretical analysis of such Charon microresonators shows, depending on the coupler design, three different transmission characteristics: normal Lorentzian dips, asymmetric Fano resonances, and Lorentzian peaks. The combination of the active azo-stilbene based polyimide SANDM2 surrounded by the hybrid polymer Ormocomp allowed the first experimental demonstration of electro-optic modulation in Charon microresonators. The low-loss modulators (down to 0.6 dB per round trip), with a radius of 50µm, were produced by micro-embossing and exhibit either highly asymmetric and steep Fano resonances with large 43-GHz modulation bandwidth or strong resonances with 11-dB extinction ratio. We show that Charon microresonators can lead to 1-V half wave voltage all-polymer micrometer-scale devices with larger tolerances to coupler fabrication limitations and wider modulation bandwidths than classical ring resonators.

© 2008 Optical Society of America

OCIS Codes
(160.5470) Materials : Polymers
(230.2090) Optical devices : Electro-optical devices
(130.4110) Integrated optics : Modulators

ToC Category:
Integrated Optics

History
Original Manuscript: November 14, 2007
Revised Manuscript: January 4, 2008
Manuscript Accepted: January 4, 2008
Published: January 8, 2008

Citation
Daniele Rezzonico, Mojca Jazbinsek, Andrea Guarino, O-Pil Kwon, and Peter Günter, "Electro-optic Charon polymeric microring modulators," Opt. Express 16, 613-627 (2008)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-2-613


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. Lee, H. E. Katz, Ch. Erben, D. M. Gill, P. Gopalan, J. D. Heber, and D. J. McGee, "Broadband modulation of light by using an electro-optic polymer," Science 298, 1401-1403 (2002). [CrossRef] [PubMed]
  2. Y. Q. Shi, C. Zhang, H. Zhang, J. H. Bechtel, L. R. Dalton, B. H. Robinson, and W. H. Steier, "Low (sub-1-volt) halfwave voltage polymeric electro-optic modulators achieved by controlling chromophore shape," Science 288, 119-122 (2000). [CrossRef]
  3. Y. Enami, C. T. Derose, D. Mathine, C. Loychik, G. Greenlee, R. A. Norwood, T. D. Kim, J. Luo, Y. Tian, A. K. Y. Jen, and N. Peyghambarian, "Hybrid polymer/sol-gel waveguide modulators with exceptionally large electro-optic coefficients," Nat. Photonics 1, 180-185 (2007). [CrossRef]
  4. H. Tazawa and W. H. Steier, "Analysis of ring resonator-based traveling-wave modulators," IEEE Photon. Technol. Lett. 18, 211-213 (2006). [CrossRef]
  5. B. Bortnik, Y. C. Hung, H. Tazawa, B. J. Seo, J. D. Luo, A. K.-Y. Jen, W. H. Steier, and H. R. Fetterman, "Electrooptic polymer ring resonator modulation up to 165 GHz," IEEE J. Sel. Top. Quantum Electron. 13, 104-110 (2007). [CrossRef]
  6. P. Rabiei, W. H. Steier, Z. Cheng, and L. R. Dalton, "Polymer microring filters and modulators," J. Lightwave Technol. 20, 1968-1975 (2002). [CrossRef]
  7. H. Tazawa, Y.-H. Kuo, I. Dunayevskiy, J. D. Luo, A. K.-Y. Jen, H. R. Fetterman, and W. H. Steier, "Ring resonatorbased electrooptic polymer traveling-wave modulator," J. Lightwave Technol. 24, 3514-3519 (2006). [CrossRef]
  8. Q. F. Xu, B. Schmidt, S. Pradhan, and M. Lipson, "Micrometre-scale silicon electro-optic modulator," Nature 435, 325-327 (2005). [CrossRef] [PubMed]
  9. D. Rezzonico, A. Guarino, C. Herzog, M. Jazbinsek, P. Günter, "High-finesse laterally coupled organic-inorganic hybrid polymer microring resonators for VLSI photonics," IEEE Photon. Technol. Lett. 18,865-867 (2006). [CrossRef]
  10. I. L. Gheorma and R. M. Osgood, "Fundamental limitations of optical resonator based on high-speed EO modulators," IEEE Photon. Technol. Lett. 14, 795-797 (2002). [CrossRef]
  11. B. E. A. Saleh and M. C. Teich, Fundamental of Photonics (Wiley, 1991). [CrossRef]
  12. K. Okamoto, Fundamentals of Optical Waveguides (Academic, 2000).
  13. M. K. Smit, E. C. M. Pennings, and H. Blok, "A normalized approach to the design of low-loss optical wave-guide bends," J. Lightwave Technol. 11, 1737-1742 (1993). [CrossRef]
  14. T. D. Kim, J. Luo, J. W. Ka, S. Hau, Y. Tian, Z. Shi, N. M. Tucker, S. H. Jang, J. W. Kang, and A. K. Y. Jen, "Ultralarge and thermally stable electro-optic activities from DielsAlder crosslinkable polymers containing binary chromophore Systems," Adv. Mater. 18, 3038-3042 (2006) [CrossRef]
  15. U. Fano, "Effects of configuration interaction on intensities and phase shifts," Phys. Rev. 124, 1866-1878 (1961). [CrossRef]
  16. Y. Lu, J. Yao, X. Li, and P. Wang, "Tunable asymmetrical Fano resonance and bistability in a microcavity-resonatorcoupled Mach-Zehnder interferometer," Opt. Lett. 30, 3069-3071 (2005). [CrossRef] [PubMed]
  17. P. P. Absil, J. V. Hryniewicz, B. E. Little, R. A. Wilson, L. G. Joneckis, and P. T. Ho, "Compact microring notch filters," IEEE Photon. Technol. Lett. 12, 398-400 (2000). [CrossRef]
  18. A. Leinse, M. B. J. Diemeer, A. Rousseau, and A. Driessen, "A novel high-speed polymeric EO modulator based on a combination of a microring resonator and an MZI," IEEE Photon. Technol. Lett. 17, 2074-2076 (2005). [CrossRef]
  19. S. H. Fan, "Sharp asymmetric line shapes in side-coupled waveguide-cavity systems," Appl. Phys. Lett. 80, 908-910 (2002). [CrossRef]
  20. C. Y. Chao and L. J. Guo, "Biochemical sensors based on polymer microrings with sharp asymmetrical resonance," Appl. Phys. Lett. 83, 1527-1529 (2003). [CrossRef]
  21. D. Rezzonico, M. Jazbinsek, P. Günter, Ch. Bosshard, D. H. Bale, Y. Liao, L. R. Dalton, P. J. Reid, "Photostability studies of p-conjugated chromophores with resonant and nonresonant light excitation for long-life polymeric telecommunication devices," J. Opt. Soc. Am. B 24, 2199-2207 (2007). [CrossRef]
  22. A. Galvan-Gonzalez, M. Canva, G. I. Stegeman, L. Sukhomlinova, R. J. Twieg, K. P. Chan, T. C. Kowalczyk, and H. S. Lackritz, "Photodegradation of azobenzene nonlinear optical chromophores: the influence of structure and environment," J. Opt. Soc. Am. B 17, 1992-2000 (2000). [CrossRef]
  23. P. Prêtre, P. Kaatz, A. Bohren, P. Günter, B. Zysset, M. Ahlheim, M. Stähelin, and F. Fehr, "Modified polyimide side-chain polymers for electrooptics," Macromolecules 27, 5476-5486 (1994). [CrossRef]
  24. A. Guarino, G. Poberaj, D. Rezzonico, R. Degl’Innocenti, and P. Günter, "Electro-optically tunable microring resonators in lithium niobate," Nat. Photonics 1, 407-410 (2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited