OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 16, Iss. 2 — Jan. 21, 2008
  • pp: 628–635

Single-TM-mode Bragg fibers made of magnetic materials

Depeng Mao, Zhengbiao Ouyang, Jong C. Wang, and Chung Ping Liu  »View Author Affiliations


Optics Express, Vol. 16, Issue 2, pp. 628-635 (2008)
http://dx.doi.org/10.1364/OE.16.000628


View Full Text Article

Enhanced HTML    Acrobat PDF (280 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Single-mode fibers are advantageous over multi-mode fibers in many aspects, e.g., much smaller loss, much longer transmission distance, much greater bandwidth, and higher bit rates. We propose a kind of single-TM-mode Bragg fiber in which magnetic materials are introduced. The idea for designing this kind of Bragg fiber comes from the symmetry of TE modes and TM modes when permittivity and permeability are replaced by each other. Through the transfer matrix method, we demonstrated a special kind of single-TM-mode Bragg fiber in a wide frequency range. Guiding modes may be in the bandgaps, at the edges of bandgaps, and in some region in conduction bands, but much more strongly confined guiding TM modes are inside the bandgaps. In addition, the optimization of the structure is also discussed.

© 2008 Optical Society of America

OCIS Codes
(060.0060) Fiber optics and optical communications : Fiber optics and optical communications
(060.2280) Fiber optics and optical communications : Fiber design and fabrication
(060.2430) Fiber optics and optical communications : Fibers, single-mode
(230.1480) Optical devices : Bragg reflectors
(230.5440) Optical devices : Polarization-selective devices

ToC Category:
Fiber Optics and Optical Communications

History
Original Manuscript: November 1, 2007
Revised Manuscript: December 20, 2007
Manuscript Accepted: December 23, 2007
Published: January 8, 2008

Citation
Depeng Mao, Zhengbiao Ouyang, Jong C. Wang, and Chung Ping Liu, "Single-TM-mode Bragg fibers made of magnetic materials," Opt. Express 16, 628-635 (2008)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-2-628


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. P. Yeh, A. Yariv, and E. Marom, "Theory of Bragg Fiber," J. Opt. Soc. Am. 68, 1196-1201 (1978). [CrossRef]
  2. E.  Yablonovitch, "Inhibited spontaneous emission in solid-state physics and electronics," Phys. Rev. Lett.  58, 2059-2062 (1987). [CrossRef] [PubMed]
  3. S.  John, "Strong localization of photons in certain disordered dielectric superlattices," Phys. Rev. Lett.  58, 2486-2489 (1987). [CrossRef] [PubMed]
  4. Y. Fink, J. N. Winn, S. Fan, C. Chen, J. Michel, J. D. Joannopoulos, and E. L. Thomas, "A dielectric omnidirectional reflector," Science 282, 1679-1682 (1998). [CrossRef] [PubMed]
  5. J. N. Winn, Y. Fink, S. Fan, and J. D. Joannopoulos, "Omnidirectional reflection from a one-dimensional photonic crystal," Opt. Lett. 23, 1573-1575 (1998). [CrossRef]
  6. Y. Fink, D. J. Ripin, S. Fan, C. Chen, J. D. Joannopoulos, and E. L. Thomas, "Guiding optical light in air using an all dielectric structure," J. Lightwave Technol. 17, 2039-2041 (1999). [CrossRef]
  7. M. Ibanescu, Y. Fink, S. Fan, E. L. Thomas, and J. D. Joannopoulos, "An all-dielectric coaxial waveguide," Science 289, 415-419 (2000). [CrossRef] [PubMed]
  8. W. C. Chew, Waves and Fields in Inhomogeneous Media, Chap. 3 (Van Nostrand Reinhold, New York, 1990).
  9. Y. Xu, R. K. Lee, and A. Yariv, "Asymptotic analysis of Bragg fibers," Opt. Lett. 25, 1756-1758 (2000). [CrossRef]
  10. Y. Xu, G. X. Ouyang, R. K. Lee, and A. Yariv, "Asymptotic matrix theory of Bragg fibers," J. Lightwave Technol. 20, 428-440 (2002). [CrossRef]
  11. Y. Xu, R. K. Lee, and A. Yariv, "Asymptotic analysis of dielectric coaxial fibers," Opt. Lett. 27, 1019-1021 (2002). [CrossRef]
  12. Y. Xu, A. Yariv, J. Fleming, and S. -Y. Lin, "Asymptotic analysis of silicon based Bragg fibers," Opt. Express 11, 1039-1049 (2003). [CrossRef] [PubMed]
  13. S. Guo, S. Albin, and R. Rogowski, "Comparative analysis of Bragg fibers," Opt. Express 12, 198-207 (2004). [CrossRef] [PubMed]
  14. S. Guo, F. Wu, K. Ikram, and S. Albin, "Analysis of circular fibers with arbitrary index profiles by Galerkin method," Opt. Lett. 29, 32-34 (2004). [CrossRef] [PubMed]
  15. T. P. Horikis and W. L. Kath, "Modal analysis of circular Bragg fibers with arbitrary index profiles," Opt. Lett. 31, 3417-3419 (2006). [CrossRef] [PubMed]
  16. C. M. de Sterke, I. M. Bassett and A. G. Street, "Differential losses in Bragg fibres," J. Appl. Phys. 76, 680-688 (1994). [CrossRef]
  17. T. Kawanishi and M. Izutsu, "Coaxial periodic optical waveguide," Opt. Express 7, 10-22 (2000). [CrossRef] [PubMed]
  18. G. Ouyang, Y. Xu and A. Yariv, "Comparative study of air-core and coaxial Bragg fibers: single mode transmission and dispersion characteristics," Opt. Express 9, 733-747 (2001). [CrossRef] [PubMed]
  19. S. G. Johnson, M. Ibanescu, M. Skorobogatiy, O. Weisberg, T. D. Engeness, M. Soljacic, S. A. Jacobs, J. D. Joannopoulos, and Y. Fink, "Low-loss asymptotically single-mode propagation in large core omniguide fibers," Opt. Express 9, 748-779 (2001). [CrossRef] [PubMed]
  20. I. M. Bassett and A. Argyros, "Elimination of polarization degeneracy in round waveguides," Opt. Express 10, 1342-1346 (2002). [PubMed]
  21. A. Argyros, "Guided modes and loss in Bragg fibers," Opt. Express 10, 1411-1417 (2002). [PubMed]
  22. M. Ibanescu, S. G. Johnson, M. Soljacic, J. D. Jonnopoulos, Y. Fink, O. Weisberg, T. D. Engeness, S. A. Jacobs, and M. Skorobogatiy, "Analysis of mode structure in hollow dielectric waveguide fibers," Phys. Rev. E 67, 046608-1-8 (2003). [CrossRef]
  23. N. Issa, A. Argyros, M. van Eijkelenborg, and J. Zagari, "Identifying hollow waveguide guidance in air-cored microstructured optical fibres," Opt. Express 11, 996-1001 (2003). [CrossRef] [PubMed]
  24. J. -I. Sakai, "Hybrid modes in a Bragg fiber: general properties and formulas under the quarter-wave stack condition," J. Opt. Soc. Am. B 22, 2319-2330 (2005). [CrossRef]
  25. J. -I. Sakai and J. Sasaki, "Hybrid modes in a Bragg fiber: dispersion relation and electromagnetic fields," J. Opt. Soc. Am. B 23, 1020-1028 (2006). [CrossRef]
  26. G. Ouyang, Y. Xu, and A. Yariv, "Theoretical study on dispersion compensation in air-core Bragg fibers," Opt. Express 10, 899-908 (2002). [PubMed]
  27. J. Monsoriu, E. Silvestre, A. Ferrando, P. Andrés, and J. Miret, "High-index-core Bragg fibers: dispersion properties," Opt. Express 11, 1400-1405 (2003). [CrossRef] [PubMed]
  28. Y. Ni, S. Jia, L. Zhang, and J. Peng, "A novel design for all-solid silica Bragg fiber with zero-dispersion wavelength at 1550 nm," Opt. Express 12, 4602-4607 (2004). [CrossRef] [PubMed]
  29. M. Born and E. Wolf, Principles of Optics, (Pergamon Press, Oxford, 1980) Chap. 1.6.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited