OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 16, Iss. 2 — Jan. 21, 2008
  • pp: 663–670

Inverse design for phase mask lithography

James W. Rinne, Sidhartha Gupta, and Pierre Wiltzius  »View Author Affiliations


Optics Express, Vol. 16, Issue 2, pp. 663-670 (2008)
http://dx.doi.org/10.1364/OE.16.000663


View Full Text Article

Enhanced HTML    Acrobat PDF (696 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We have developed a method for designing the diffractive optics used in phase mask lithography. Genetic algorithms were used to inverse-design a grating’s relief profile and associated exposure conditions so that desired periodic structures are formed. An experimentally promising grating designed to produce helices is demonstrated.

© 2008 Optical Society of America

OCIS Codes
(050.1950) Diffraction and gratings : Diffraction gratings
(120.4610) Instrumentation, measurement, and metrology : Optical fabrication
(220.3740) Optical design and fabrication : Lithography
(220.4000) Optical design and fabrication : Microstructure fabrication
(260.3160) Physical optics : Interference
(050.6875) Diffraction and gratings : Three-dimensional fabrication

ToC Category:
Optical Design and Fabrication

History
Original Manuscript: November 1, 2007
Revised Manuscript: January 3, 2008
Manuscript Accepted: January 3, 2008
Published: January 8, 2008

Citation
James W. Rinne, Sidhartha Gupta, and Pierre Wiltzius, "Inverse design for phase mask lithography," Opt. Express 16, 663-670 (2008)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-2-663


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. E. Yablonovitch, "Inhibited spontaneous emission in Solid-State Physics and Electronics," Phys. Rev. Lett. 58, 2059-2062 (1987). [CrossRef] [PubMed]
  2. S. John, "Strong localization of photons in certain disordered dielectric superlattices," Phys. Rev. Lett. 58, 2486-2489 (1987). [CrossRef] [PubMed]
  3. S. Jeon, J. U. Park, R. Cirelli, S. Yang, C. E. Heitzman, P. V. Braun, P. J. A. Kenis and J. A. Rogers, "Fabricating complex three-dimensional nanostructures with high-resolution conformable phase masks," Proc. Natl. Acad. Sci. U. S. A. 101, 12428-12433 (2004). [CrossRef] [PubMed]
  4. S. Jeon, Y. S. Nam, D. J. L. Shir and J. A. Rogers, "Three dimensional nanoporous density graded materials formed by optical exposures through conformable phase masks," Appl. Phys. Lett. 89, 253101 (2006). [CrossRef]
  5. Y. S. Nam, S. Jeon, D. J. L. Shir, A. Hamza and J. A. Rogers, "Thick, three-dimensional nanoporous density-graded materials formed by optical exposures of photopolymers with controlled levels of absorption," Appl. Opt. 46, 6350-6354 (2007). [CrossRef] [PubMed]
  6. L. Boldrin, N. Elvassore, A. Malerba, M. Flaibani, E. Cimetta, M. Piccoli, M. D. Baroni, M. V. Gazzola, C. Messina, P. Gamba, L. Vitiello and P. De Coppi, "Satellite cells delivered by micro-patterned scaffolds: A new strategy for cell transplantation in muscle diseases," Tissue Eng. 13, 253-262 (2007). [CrossRef] [PubMed]
  7. A. P. Philipse, "Solid opaline packings of colloidal silica spheres," J. Mater. Sci. Lett. 8, 1371-1373 (1989). [CrossRef]
  8. S. Noda, N. Yamamoto, and A. Sasaki, "New realization method for three-dimensional photonic crystal in optical wavelength region," Jpn. J. Appl. Phys., Part 2 35, L 909-L 912 (1996). [CrossRef]
  9. V. Berger, O. Gauthierlafaye and E. Costard, "Photonic band gaps and holography," J. Appl. Phys. 82, 60-64 (1997). [CrossRef]
  10. M. Campbell, D. N. Sharp, M. T. Harrison, R. G. Denning and A. J. Turberfield, "Fabrication of photonic crystals for the visible spectrum by holographic lithography," Nature 404, 53-56 (2000). [CrossRef] [PubMed]
  11. N. Tetreault, G. von Freymann, M. Deubel, M. Hermatschweiler, F. Perez-Willard, S. John, M. Wegener and G. A. Ozin, "New route to three-dimensional photonic bandgap materials: Silicon double inversion of polymer templates," Adv. Mater. 18, 457-460 (2006). [CrossRef]
  12. A. Blanco, E. Chomski, S. Grabtchak, M. Ibisate, S. John, S. W. Leonard, C. Lopez, F. Meseguer, H. Miguez, J. P. Mondia, G. A. Ozin, O. Toader and H. M. van Driel, "Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometres," Nature 405, 437-440 (2000). [CrossRef] [PubMed]
  13. H. M. Yates, W. R. Flavell, M. E. Pemble, N. P. Johnson, S. G. Romanov and C. M. Sotomayortorres, "Novel quantum confined structures via atmospheric pressure mocvd growth in asbestos and opals," J. Cryst. Growth 170, 611-615 (1997). [CrossRef]
  14. P. V. Braun and P. Wiltzius, "Microporous materials - Electrochemically grown photonic crystals," Nature 402, 603-604 (1999). [CrossRef]
  15. M. G. Moharam, E. B. Grann, D. A. Pommet and T. K. Gaylord, "Formulation for stable and efficient implementation of the rigorous coupled-wave analysis of binary gratings," J. Opt. Soc. Am. A. 12, 1068-1076 (1995). [CrossRef]
  16. M. G. Moharam, D. A. Pommet, E. B. Grann and T. K. Gaylord, "Stable implementation of the rigorous coupled-wave analysis for surface-relief gratings - enhanced transmittance matrix approach," J. Opt. Soc. Am. A. 12, 1077-1086 (1995). [CrossRef]
  17. Y. Lin, P. R. Herman and K. Darmawikarta, "Design and holographic fabrication of tetragonal and cubic photonic crystals with phase mask: toward the mass-production of three-dimensional photonic crystals," Appl. Phys. Lett. 86 071117 (2005). [CrossRef]
  18. S. Jeon, D. J. Shir, Y. S. Nam, R. Nidetz, M. Highland, D. G. Cahill, J. A. Rogers, M. F. Su, I. F. El-Kady, C. G. Christodoulou and G. R. Bogart, "Molded transparent photopolymers and phase shift optics for fabricating three dimensional nanostructures," Opt. Express 15, 6358-6366 (2007). [CrossRef] [PubMed]
  19. T. Y. M. Chan, O. Toader and S. John, "Photonic band-gap formation by optical-phase-mask lithography," Phys. Rev. E 73,046610 (2006).
  20. J. H. Holland, Adaptation in Natural and Artificial Systems (University of Michigan Press, Ann Arbor, 1975).
  21. M. Mitchell, An Introduction to Genetic Algorithms (The MIT Press, Cambridge, 1998).
  22. J. W. Rinne and P. Wiltzius, "Design of holographic structures using genetic algorithms," Opt. Express 14, 9909-9916 (2006). [CrossRef] [PubMed]
  23. Q. H. Wu, I. J. Hodgkinson and A. Lakhtakia, "Circular polarization filters made of chiral sculptured thin films: experimental and simulation results," Opt. Eng. 39, 1863-1868 (2000). [CrossRef]
  24. O. Toader and S. John, "Proposed square spiral microfabrication architecture for large three-dimensional photonic band gap crystals," Science 292, 1133-1135 (2001). [CrossRef] [PubMed]
  25. J. Hwang, M. H. Song, B. Park, S. Nishimura, T. Toyooka, J. W. Wu, Y. Takanishi, K. Ishikawa and H. Takezoe, "Electro-tunable optical diode based on photonic bandgap liquid-crystal heterojunctions," Nat. Mater. 4, 383-387 (2005). [CrossRef] [PubMed]
  26. S. Huard, Polarization of Light (John Willey & Sons, New York, 1997).
  27. S. Jeon, V. Malyarchuk, J. A. Rogers and G. P. Wiederrecht, "Fabricating three dimensional nanostructures using two photon lithography in a single exposure step," Opt. Express 14, 2300-2308 (2006). [CrossRef] [PubMed]
  28. W. M. Spears and K. A. De Jong, "On the Virtues of Parameterized Uniform Crossover," in Proceedings of the Fourth International Conference on Genetic Algorithms, R. K. Belew and L. B. Booker, eds. (Kaufmann, M, 1991), pp. 230-236.
  29. W. H. Press, B. P. Flannery, S. A. Teukolsky and W. T. Vetterling, Numerical Recipes in C (Cambridge University Press, Cambridge, 1991).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2. Fig. 3.
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited