OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 16, Iss. 2 — Jan. 21, 2008
  • pp: 695–709

Singular polarimetry: Evolution of polarization singularities in electromagnetic waves propagating in a weakly anisotropic medium

Konstantin Yu. Bliokh, Avi Niv, Vladimir Kleiner, and Erez Hasman  »View Author Affiliations


Optics Express, Vol. 16, Issue 2, pp. 695-709 (2008)
http://dx.doi.org/10.1364/OE.16.000695


View Full Text Article

Enhanced HTML    Acrobat PDF (1104 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We describe the evolution of a paraxial electromagnetic wave characterizing by a non-uniform polarization distribution with singularities and propagating in a weakly anisotropic medium. Our approach is based on the Stokes vector evolution equation applied to a non-uniform initial polarization field. In the case of a homogeneous medium, this equation is integrated analytically. This yields a 3-dimensional distribution of the polarization parameters containing singularities, i.e. C-lines of circular polarization and L-surfaces of linear polarization. The general theory is applied to specific examples of the unfolding of a vectorial vortex in birefringent and dichroic media.

© 2008 Optical Society of America

OCIS Codes
(260.1180) Physical optics : Crystal optics
(260.2130) Physical optics : Ellipsometry and polarimetry
(260.5430) Physical optics : Polarization
(260.6042) Physical optics : Singular optics

ToC Category:
Physical Optics

History
Original Manuscript: October 29, 2007
Revised Manuscript: December 13, 2007
Manuscript Accepted: December 15, 2007
Published: January 8, 2008

Citation
Konstantin Yu. Bliokh, Avi Niv, Vladimir Kleiner, and Erez Hasman, "Singular polarimetry: Evolution of polarization singularities in electromagnetic waves propagating in a weakly anisotropic medium," Opt. Express 16, 695-709 (2008)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-2-695


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. V. Berry, "Singularities in waves and rays," in Les Houches Session XXV - Physics of Defects, R. Balian, M. Kléman, and J.-P. Poirier, eds., (North-Holland, 1981).
  2. J. F.  Nye, Natural Focusing and Fine Structure of Light: caustics and wave dislocations (IoP Publishing, 1999).
  3. M. S. Soskin and M. V. Vasnetsov, "Singular optics," Prog. Opt. 42, 219-276 (2001). [CrossRef]
  4. L. Allen, M. J. Padgett, and M. Babiker, "The orbital angular momentum of light," Prog. Opt. 39, 291-372 (1999). [CrossRef]
  5. J. F. Nye, "Lines of circular polarization in electromagnetic wave fields," Proc. R. Soc. London A 389, 279-290 (1983). [CrossRef]
  6. J. F. Nye and J. V. Hajnal, "The wave structure of monochromatic electromagnetic radiation," Proc. R. Soc. London A 409, 21-36 (1987). [CrossRef]
  7. M. V. Berry and M. R. Dennis, "Polarization singularities in isotropic random vector waves," Proc. R. Soc. London A 457, 141−155 (2001). [CrossRef]
  8. I.  Freund, "Polarization singularity indices in Gaussian laser beams," Opt. Commun. 201, 251-270 (2002). [CrossRef]
  9. M. R. Dennis, "Polarization singularities in paraxial vector fields: morphology and statistics," Opt. Commun. 213, 201-221 (2002). [CrossRef]
  10. J.  Masajada and B. Dubik, "Optical vortex generation by three plane wave interference," Opt. Commun. 198, 21-27 (2001). [CrossRef]
  11. I.  Freund, N. Shvartsman, and V. Freilikher, "Optical dislocation networks in highly random media," Opt. Commun. 101, 247-264 (1993). [CrossRef]
  12. E.  Hasman, G.  Biener, A.  Niv, and V.  Kleiner, "Space-variant polarization manipulation," Prog. Opt. 47, 215-289 (2005). [CrossRef]
  13. A.  Niv, G.  Biener, V.  Kleiner, and E. Hasman, "Manipulation of the Pancharatnam phase in vectorial vortices," Opt. Express 14, 4208-4220 (2006). [CrossRef] [PubMed]
  14. K. Yu. Bliokh, "Geometrical optics of beams with vortices: Berry phase and orbital angular momentum Hall effect," Phys. Rev. Lett. 97, 043901 (2006). [CrossRef] [PubMed]
  15. F.  Flossmann, U. T. Schwarz, M. Maier, and M. R. Dennis, "Polarization singularities from unfolding an optical vortex through a birefringent crystal," Phys. Rev. Lett. 95, 253901 (2005). [CrossRef] [PubMed]
  16. F. Flossmann, U. T. Schwarz, M. Maier, and M. R. Dennis, "Stokes parameters in the unfolding of an optical vortex through a birefringent crystal," Opt. Express 14, 11402-11411 (2006). [CrossRef] [PubMed]
  17. R. M. A. Azzam and N. M. Bashara, Ellipsometry and Polarized Light (North-Holland, 1977).
  18. C. Brosseau, Fundamentals of Polarized Light (John Wiley and Sons, 1998).
  19. R. M. A.  Azzam, "Propagation of partially polarized light through anisotropic media with or without depolarization: a differential 4x4 matrix calculus," J. Opt. Soc. Am. 68, 1756-1767 (1978). [CrossRef]
  20. C. S.  Brown and A. E.  Bak, "Unified formalism for polarization optics with application to polarimetry on a twisted optical fiber," Opt. Eng. 34, 1625-1635 (1995). [CrossRef]
  21. C.  Brosseau, "Evolution of the Stokes parameters in optically anisotropic media," Opt. Lett. 20, 1221-1223 (1995). [CrossRef] [PubMed]
  22. H.  Kuratsuji and S.  Kakigi, "Maxwell-Schrödinger equation for polarized light and evolution of the Stokes parameters," Phys. Rev. Lett. 80, 1888-1891 (1998). [CrossRef]
  23. S. E.  Segre, "New formalism for the analysis of polarization evolution for radiation in a weakly nonuniform, fully anisotropic medium: a magnetized plasma," J. Opt. Soc. Am. A 18, 2601-2606 (2001). [CrossRef]
  24. R.  Botet, H.  Kuratsuji, and R.  Seto, "Novel aspects of evolution of the Stokes parameters for an electromagnetic wave in anisotropic media," Prog. Theor. Phys. 116, 285-294 (2006). [CrossRef]
  25. K. Y.  Bliokh, D. Y.  Frolov, and Y. A.  Kravtsov, "Non-Abelian evolution of electromagnetic waves in a weakly anisotropic inhomogeneous medium," Phys. Rev. A 75, 053821 (2007). [CrossRef]
  26. Y. A.  Kravtsov, B.  Bieg, and K. Y.  Bliokh, "Stokes-vector evolution in a weakly anisotropic inhomogeneous medium," J. Opt. Soc. Am. A 24, 3388-3396 (2007). [CrossRef]
  27. R.  Barakat, "Bilinear constraints between elements of the 4x4 Mueller-Jones transfer matrix of polarization theory," Opt. Commun. 38, 159-161 (1981). [CrossRef]
  28. R.  Simon, "The connection between Mueller and Jones matrices of polarization optics," Opt. Commun. 42, 293-297 (1982). [CrossRef]
  29. S. R.  Cloude, "Group theory and polarization algebra," Optik 75, 26-32 (1986).
  30. T.  Opartny and J.  Perina, "Non-image-forming polarization optical devices and Lorentz transformation - an analogy," Phys. Lett. A 181, 199-202 (1993). [CrossRef]
  31. D.  Han, Y. S.  Kim, and M. E.  Noz, "Polarization optics and bilinear representation of the Lorentz group," Phys. Lett. A. 219, 26-32 (1996). [CrossRef]
  32. V. B. Berestetskii, E. M. Lifshits, and L. P. Pitaevskii, Quantum Electrodynamics (Pergamon, Oxford, 1982).
  33. C. P. Slichter, Principles of Magnetic Resonance (Springer-Verlag, New York, 1989).
  34. H.  Goldstein, C.  Poole, and J. Safko, Classical Mechanics (Addison Wesley, San Francisco, 2002).
  35. A. D.  Kiselev, "Singularities in polarization resolved angular patterns: transmittance of nematic liquid crystal cells," J. Phys.: Condens. Matter 19, 246102 (2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited