OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 16, Iss. 2 — Jan. 21, 2008
  • pp: 753–791

Coherent detection in optical fiber systems

Ezra Ip, Alan Pak Tao Lau, Daniel J. F. Barros, and Joseph M. Kahn  »View Author Affiliations


Optics Express, Vol. 16, Issue 2, pp. 753-791 (2008)
http://dx.doi.org/10.1364/OE.16.000753


View Full Text Article

Acrobat PDF (719 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The drive for higher performance in optical fiber systems has renewed interest in coherent detection. We review detection methods, including noncoherent, differentially coherent, and coherent detection, as well as a hybrid method. We compare modulation methods encoding information in various degrees of freedom (DOF). Polarization-multiplexed quadrature-amplitude modulation maximizes spectral efficiency and power efficiency, by utilizing all four available DOF, the two field quadratures in the two polarizations. Dual-polarization homodyne or heterodyne downconversion are linear processes that can fully recover the received signal field in these four DOF. When downconverted signals are sampled at the Nyquist rate, compensation of transmission impairments can be performed using digital signal processing (DSP). Linear impairments, including chromatic dispersion and polarization-mode dispersion, can be compensated quasi-exactly using finite impulse response filters. Some nonlinear impairments, such as intra-channel four-wave mixing and nonlinear phase noise, can be compensated partially. Carrier phase recovery can be performed using feedforward methods, even when phase-locked loops may fail due to delay constraints. DSP-based compensation enables a receiver to adapt to time-varying impairments, and facilitates use of advanced forward-error-correction codes. We discuss both single- and multi-carrier system implementations. For a given modulation format, using coherent detection, they offer fundamentally the same spectral efficiency and power efficiency, but may differ in practice, because of different impairments and implementation details. With anticipated advances in analog-to-digital converters and integrated circuit technology, DSP-based coherent receivers at bit rates up to 100 Gbit/s should become practical within the next few years.

© 2008 Optical Society of America

OCIS Codes
(060.0060) Fiber optics and optical communications : Fiber optics and optical communications
(060.1660) Fiber optics and optical communications : Coherent communications
(060.2920) Fiber optics and optical communications : Homodyning
(060.4080) Fiber optics and optical communications : Modulation
(060.5060) Fiber optics and optical communications : Phase modulation
(060.2840) Fiber optics and optical communications : Heterodyne

ToC Category:
Review

History
Original Manuscript: August 20, 2007
Revised Manuscript: November 9, 2007
Manuscript Accepted: November 12, 2007
Published: January 9, 2008

Virtual Issues
(2009) Advances in Optics and Photonics
Coherent Optical Communication (2008) Optics Express

Citation
Ezra Ip, Alan Pak Tao Lau, Daniel J. F. Barros, and Joseph M. Kahn, "Coherent detection in optical fiber systems," Opt. Express 16, 753-791 (2008)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-2-753


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. C.E. Shannon, "A mathematical theory of communication," Bell. Syst. Tech. J. 27, 379−423 (1948).
  2. J. M. Geist, "Capacity and cutoff rate for dense M-ary PSK constellations," in MILCOM 1990, (Monterey, CA, USA, 1990), pp. 768−770.
  3. K.-P. Ho, "Exact evaluation of the capacity for intensity-modulated direct-detection channels with optical amplifier noises," IEEE Photon. Technol. Lett. 17, 858−860 (2005). [CrossRef]
  4. P.P. Mitra and J.B. Stark, "Nonlinear limits to the information capacity of optical fiber communications," Nature 411, 1027-1030 (2001). [CrossRef]
  5. J. M. Kahn and K.-P. Ho, "Spectral efficiency limits and modulation/detection techniques for DWDM Systems," J. Sel. Top. Quantum Electron. 10, 259-271 (2004).
  6. V. Jungnickel, A. Forck, T. Haustein, S. Schiffermuller, C. Helmolt, F. Luhn, M. Pollock, C. Juchems, M. Lampe, S. Eichnger, W. Zirwas, E. Schulz, "1 Gbit/s MIMO-OFDM transmission experiments," in Proceedings of IEEE Conference on Vehicular Technol. (Institute of Electrical and Electronics Engineers, Dallas, 2005), pp. 861-866.
  7. K. Kikuchi, "Coherent detection of phase-shift keying signals using digital carrier-phase estimation," in Proceedings of IEEE Conference on Optical Fiber Communications, (Institute of Electrical and Electronics Engineers, Anaheim, 2006), Paper OTuI4.
  8. T. Pfau, S. Hoffmann, R. Peveling, S. Bhandard, S. Ibrahim, O. Adamczyk, M. Porrmann, R. Noé and Y. Achiam, "First real-time data recovery for synchronous QPSK transmission with standard DFB lasers," IEEE Photon. Technol. Lett. 18, 1907-1909 (2006). [CrossRef]
  9. A. Leven, N. Kaneda, U.-V. Koc and Y.-K. Chen, "Coherent receivers for practical optical communication systems," in Proceedings of IEEE Conference on Optical Fiber Communications, (Institute of Electrical and Electronics Engineers, Anaheim, 2007), Paper OThK4.
  10. S. J. Savory, G. Gavioli, R. I. Killey, P. Bayvel, "Transmission of 42.8 Gbit/s polarization multiplexed NRZ-QPSK over 6400 km of standard fiber with no optical dispersion compensation," in Proceedings of IEEE Conference on Optical Fiber Communications, (Institute of Electrical and Electronics Engineers, Anaheim, 2007), Paper OTuA1.
  11. K. Sekine, N. Kikuchi, S. Sasaki, S. Hayase, C. Hasegawa and T. Sugawara, "40 Gbit/s, 16-ary (4 bit/symbol) optical modulation/demodulation scheme," Electron. Lett. 41, 430-432, (2005). [CrossRef]
  12. J. Hongo, K. Kasai, M. Yoshida and M. Nakazawa, "1-Gsymbol/s 64-QAM coherent optical transmission over 150 km," IEEE Photon. Technol. Lett. 19, 638-640 (2007). [CrossRef]
  13. T. Foggi, E. Forestieri, G. Colavolpe and G. Prati, "Maximum-likelihood sequence detection with closed-form metrics in OOK optical systems impaired by GVD and PMD," J. Lightwave Technol. 24, 3073-3087 (2006). [CrossRef]
  14. M. Nazarathy and E. Simony, "Multichip differential phase encoded optical transmission," IEEE Photon. Technol. Lett. 17, 1133-1135 (2005). [CrossRef]
  15. D. Divsalar and M. Simon, "Multiple-symbol differential detection of MPSK," IEEE Trans. Commun. 38, 300-308 (1990). [CrossRef]
  16. S. Benedetto and P. Poggiolini, "Theory of polarization shift keying modulation," IEEE Trans. Commun. 40, 708−721 (1992). [CrossRef]
  17. S. Betti, F. Curti, G. de Marchis and E. Iannone, "Multilevel coherent optical system based on Stokes parameters modulation," J. Lightwave Technol. 8, 1127−1136 (1990). [CrossRef]
  18. E. Ip and J. M. Kahn, "Feedforward carrier recovery for coherent optical communications," J. Lightwave Technol.,  25, 2675-2692 (2007). [CrossRef]
  19. E. Ip and J.M. Kahn, "Digital equalization of chromatic dispersion and polarization mode dispersion," J. Lightwave Technol. 25, 2033-2043 (2007). [CrossRef]
  20. E. Ip and J.M. Kahn, "Carrier synchronization for 3- and 4-bit-per-symbol optical transmission," J. Lightwave Technol. 23, 4110-4124 (2005). [CrossRef]
  21. S. Tsukamoto, K. Katoh and K. Kikuchi, "Coherent demodulation of optical multilevel phase-shift-keying signals using homodyne detection and digital signal processing," IEEE Photon. Technol. Lett. 18, 1131-1133 (2006). [CrossRef]
  22. G. P. Agrawal, Fiber-Optic Communiation Systems, 3rd ed. (Wiley, New York, 2002).
  23. J. R. Barry and J.M. Kahn, "Carrier synchronization for homodyne and heterodyne detection of optical quadriphase-shift keying," J. Lightwave Technol. 10, 1939-1951 (1992). [CrossRef]
  24. R. Noé, "Phase noise-tolerant synchronous QPSK/BPSK baseband-type intradyne receiver concept with feedforward carrier recovery," J. Lightwave Technol. 23, 802−808 (2005). [CrossRef]
  25. J. Rebola and A. Cartaxo, "Optimization of level spacing in quaternary optical communication systems," Proc. SPIE 4087, 49−59 (2000).
  26. J. J. Bussgang and M. Leiter, "Error rate approximations for differential phase-shift keying." IEEE Trans. Commun. Systems 12, 18-27 (1964).
  27. J. G. Proakis, "Probabilities of error for adaptive reception of M-phase signals," IEEE Trans. Commun. Tech. 16, 71-81 (1968).
  28. S. Benedetto and P. Poggiolini, "Multilevel polarization shift keying: optimum receiver structure and performance evaluation," IEEE Trans. Commun. 42, 1174-1186 (1994). [CrossRef]
  29. J. G. Proakis, Digital Communications, 4th ed. (McGraw-Hill, New York, 2001).
  30. M. Suzuki and N. Edagawa, "Dispersion-managed high-capacity ultra-long-haul transmission," J. Lightwave Technol. 21, 916−929 (2003). [CrossRef]
  31. E. Forestieri and G. Prati, "Exact analytical evaluation of second-order PMD impact on the outage probability for a compensated system," J. Lightwave Technol. 22, 988−996 (2004). [CrossRef]
  32. C. D. Poole, R. W. Tkach, A. R. Chraplyvy and D. A. Fishman, "Fading in lightwave systems due to polarization-mode dispersion," IEEE Photon. Technol. Lett. 3, 68-70 (1991). [CrossRef]
  33. H. Bülow, W. Baumert, H. Schmuck, F. Mohr, T. Schulz, F. Küppers and W. Weiershausen, "Measurement of the maximum speed of PMD fluctuation in installed field fiber," in Proceedings of IEEE Conference on Optical Fiber Communications, (Institute of Electrical and Electronics Engineers, San Diego, 1999), Paper OWE4.
  34. C. D. Poole, "Statistical treatment of polarization dispersion in single-mode fiber," Opt. Lett. 13, 687-689 (1988).
  35. N. Gisin, J.-P. Von der Weid and J.-P. Pellaux, "Polarization mode dispersion of short and long single-mode fibers," J. Lightwave Technol. 9, 821-827 (1991). [CrossRef]
  36. G. J. Foschini and C. D. Poole, "Statistical theory of polarization dispersion in single-mode fibers," J. Lightwave Technol. 9, 1439-1456 (1991). [CrossRef]
  37. H. Bülow, "System outage probability due to first- and second-order PMD," IEEE Photon. Technol. Lett. 10, 696-698 (1998). [CrossRef]
  38. H. Sunnerud, C. Xie, M. Karlsson, R. Samuelsson and P. Andrekson, "A comparison between different PMD compensation techniques," J. Lightwave Technol. 20, 368-378 (2002). [CrossRef]
  39. F. Buchali and H. Bülow, "Adaptive PMD compensation by electrical and optical techniques," J. Lightwave Technol. 22, 1116-1126 (2004). [CrossRef]
  40. R. Noé, D. Sandel, M. Yoshida-Dierolf, S. Hinz, V. Mirvoda, A. Schöpflin, C. Flingener, E. Gottwald, C. Scheerer, G. Fischer, T. Weyrauch and W. Haase, "Polarization mode dispersion compensation at 10, 20, and 40 Gb/s with various optical equalizer," J. Lightwave Technol. 17, 1602-1616 (1999). [CrossRef]
  41. S. Lee, R. Khosravani, J. Peng, V. Grubsky, D. S. Starodubov, A. E. Willner and J. Feinberg, "Adjustable compensation of polarization mode dispersion using a high-birefringence nonlinearly chirped fiber Bragg grating," IEEE Photon. Technol. Lett. 11, 1277-1279 (1999). [CrossRef]
  42. T. Saida, K. Takiguchi, S. Kuwahara, Y. Kisaka, Y. Miyamoto, Y. Hashizume, T. Shibata and K. Okamoto, "Planar lightwave circuit polarization-mode dispersion compensator," IEEE Photon. Technol. Lett. 14, 507-509 (2002). [CrossRef]
  43. J. Wang and J. M. Kahn, "Performance of electrical equalizers in optical amplified OOK and DPSK systems," IEEE Photon. Technol. Lett. 16, 1397-1399 (2004). [CrossRef]
  44. C. Vinegoni, M. Karlsson, M. Petersson and H. Sunnerud, "The statistics of polarization-dependent loss in a recirculating loop," J. Lightwave Technol. 22, 968−976 (2004). [CrossRef]
  45. A. H. Gnauck, P. J. Winzer and S. Chandrasekhar, "Hybrid 10/40-G transmission on a 50-GHz Grid through 2800 km of SSMF and seven optical add-drops," IEEE Photon. Technol. Lett. 17, 2203−2205 (2005). [CrossRef]
  46. G. Goldfarb and G. Li, "Chromatic dispersion compensation using digital IIR filtering with coherent detection," IEEE Photon. Technol. Lett. 19, 969−971 (2007). [CrossRef]
  47. N. Amitay and J. Salz, "Linear Equalization Theory in Digital Data Transmission over Dually Polarized Fading Radio Channels," Bell. Syst. Tech. J. 63, 2215-2259 (1984).
  48. J. Salz, "Digital transmission over cross-coupled linear channels," AT&T Tech. J. 64, 1147-1159 (1985).
  49. H. Meyr, M. Moeneclaey and S. Fechtel, Digital Communication Receivers. (John Wiley, New York, 1997).
  50. R.D. Gitlin and S. B. Weinstein, "Fractionally spaced equalization: an improved digital transversal equalizer," Bell. Syst. Tech. J. 60, 275-296 (1981).
  51. G. Ungerboeck, "Fractional tap-spacing equalizer and consequences for clock recovery in data modems," IEEE Trans. Commun. 24, 856-864 (1976). [CrossRef]
  52. S. Qureshi, "Adaptive equalization," Proceedings of the IEEE 73, 1349-1387 (1985).
  53. B. Widrow and S. D. Stearns, Adaptive Signal Processing, (Prentice Hall, Englewood Cliffs, NJ, 1985).
  54. A. Oppenheim and R. Schafer, Discrete-Time Signal Processing, (Prentice Hall, Englewood Cliffs, NJ, 1989).
  55. A. Mecozzi, C. B. Clausen and M. Shtaif, "Analysis of intrachannel nonlinear effects in highly dispersed optical pulse transmission," IEEE Photon. Technol. Lett. 12, 392−394 (2000). [CrossRef]
  56. I. Shake, H. Takara, K. Mori, S. Kawanishi and Y. Yamabayashi, "Influence of inter-bit four-wave mixing in optical TDM transmission," Electron. Lett. 34, 1600−1601 (1998). [CrossRef]
  57. R.-J. Essiambre, B. Mikkelsen and G. Raybon, "Intra-channel cross-phase modulation and four-wave mixing in high-speed TDM systems," Electron. Lett. 35, 1576−1578 (1999). [CrossRef]
  58. A. Mecozzi, C. B. Clausen, M. Shtaif, S.-G. Park and A. H. Gnauck, "Cancellation of timing and amplitude jitter in symmetric links using highly dispersed pulses," IEEE Photon. Technol. Lett. 13, 445−447 (2001). [CrossRef]
  59. A. Striegler and B. Schmauss, "Compensation of intrachannel effects in symmetric dispersion-managed transmission systems," J. Lightwave Technol. 22, 1877−1882 (2004). [CrossRef]
  60. N. Alic and Y. Fainman, "Data-dependent phase coding for suppression of ghost pulses in optical fibers," IEEE Photon. Technol. Lett. 16, 1212−1214 (2004). [CrossRef]
  61. I.B. Djordjevic and B. Vasic, "Constrained coding techniques for suppression of intrachannel nonlinear effects in high-speed optical transmission," J. Lightwave Technol. 24, 411−419 (2006). [CrossRef]
  62. X. Wei and X. Liu, "Analysis of intrachannel four-wave mixing in differential phase-shift keying transmission with large dispersion," Opt. Lett. 28, 2300−2302 (2003). [CrossRef]
  63. A. P. T. Lau, S. Rabbani and J. M. Kahn are preparing a manuscript to be called "On the statistics of intra-channel four-wave-mixing induced phase noise in phase modulated systems."
  64. J. P. Gordon and L.F. Mollenauer, "Phase noise in photonic communications systems using linear amplifiers," Opt. Lett. 15, 1351−1353 (1990).
  65. K.-P. Ho, Phase-Modulated Optical Communication Systems, (Springer, New York, 2005).
  66. K.-P. Ho, "Statistical properties of nonlinear phase noise," in Advances in Optics and Laser Research3, (Nova Science Publishers, New York, 2003).
  67. A. P. T. Lau and J. M. Kahn, "Design of inline amplifiers gain and spacing to minimize phase noise in optical transmission systems," J. Lightwave Technol. 24, 1334−1341 (2006). [CrossRef]
  68. A.P.T. Lau and J.M. Kahn, "Power profile optimization in phase-modulated systems in presence of nonlinear phase noise," IEEE Photon. Technol. Lett. 18, 2514−2516 (2006). [CrossRef]
  69. K.-P. Ho and J. M. Kahn, "Detection technique to mitigate Kerr effect phase noise," J. Lightwave Technol. 22, 779−783 (2004). [CrossRef]
  70. D.-S. Ly-Gagnon and K. Kikuchi, "Cancellation of nonlinear phase noise in DPSK transmission," 2004 Optoelectronics and Communications Conference and International Conference on Optical Internet (OECC/COIN2004), paper 14C3-3 (2004).
  71. X. Liu, X. Wei, R. E. Slusher and C. J. McKinstrie, "Improving transmission performance in differential phase-shift-keyed systems by use of lumped nonlinear phase-shift compensation," Opt. Lett. 27, 1616−1618 (2002). [CrossRef]
  72. K. Kikuchi, M. Fukase and S.-Y. Kim, "Electronic post-compensation for nonlinear phase noise in a 1000-km 20-Gbit/s optical QPSK transmission system using the homodyne receiver with digital signal processing," in Proceedings of IEEE Conference on Optical Fiber Communications, (Institute of Electrical and Electronics Engineers, Anaheim, 2007), Paper OTuA2.
  73. G. Charlet, N. Maaref, J. Renaudier, H. Mardoyan, P. Tran and S. Bigo, "Transmission of 40 Gb/s QPSK with coherent detection over ultra-long distance improved by nonlinearity mitigation," in Proceedings ECOC 2006, Cannes, France, 2006, Postdeadline paper Th4.3.4.
  74. G. Zhu, L. Mollenauer and C. Xu, "Experimental demonstration of post-nonlinearity compensation in a multispan DPSK transmission," IEEE Photon. Technol. Lett. 18, 1007−1009 (2006). [CrossRef]
  75. K.P. Ho, "Mid-span compensation of nonlinear phase noise," Opt. Comm. 245, 391−398 (2005).
  76. A. P. T. Lau and J. M. Kahn, "Signal design and detection in presence of nonlinear phase noise," J. Lightwave Technol. 25, 3008−3016 (2007). [CrossRef]
  77. A.G. Green, P.P. Mitra, L.G. L. Wegener, "Effect of chromatic dispersion on nonlinear phase noise," Opt. Lett. 28, 2455−2457 (2003).
  78. S. Kumar, "Effect of dispersion on nonlinear phase noise in optical transmission systems," Opt. Lett. 30, 3278−3280 (2005). [CrossRef]
  79. K.-P. Ho and H.C. Wang, "On the effect of dispersion on nonlinear phase noise," Opt. Lett. 31, 2109−2111 (2006). [CrossRef]
  80. S. Kumar and L. Liu, "Reduction of nonlinear phase noise using optical phase conjugation in quasi-linear optical transmission systems," Opt. Express 15, 2166−2177 (2007). [CrossRef]
  81. D. Boivin, G.-K. Chang, J. R. Barry and M. Hanna, "Reduction of Gordon-Mollenauer phase noise in dispersion-managed systems using in-line spectral inversion," J. Opt. Soc. Am. A. B 23, 2019−2023 (2006).
  82. P. Serena, A. Orlandini and A. Bononi, "Parametric-Gain approach to the analysis of single-channel DPSK/DQPSK systems with nonlinear phase noise," J. Lightwave Technol. 24, 2026−2037 (2006). [CrossRef]
  83. K.P. Ho and H.C. Wang, "Comparison of nonlinear phase noise and intrachannel four-wave mixing for RZ-DPSK signals in dispersive transmission systems," IEEE Photon. Technol. Lett. 17, 1426−1428 (2005). [CrossRef]
  84. F. Zhang, C. A. Bunge and K. Petermann, "Analysis of nonlinear phase noise in single-channel return-to-zero differential phase-shift keying transmission systems," Opt. Lett. 31, 1038−1040 (2006). [CrossRef]
  85. F. Zhang, C. A. Bunge, K. Petermann and A. Richter, "Optimum dispersion mapping of single-channel 40 Gbit/s return-to-zero differential phase-shift keying transmission systems," Optics Express 14, 6613−6618 (2006). [CrossRef]
  86. X. Zhu, S. Kumar and X. Li, "Analysis and comparison of impairments in differential phase-shift keying and on-off keying transmission systems based on the error probability," Appl. Opt. 45, 6812−6822 (2006). [CrossRef]
  87. C. Henry, "Theory of the phase noise and power spectrum of a single mode injection laser," J. Quantum Electron. 19, 1391-1397 (1983). [CrossRef]
  88. M. Tur, B. Moslehi and J. W. Goodman, "Theory of laser phase noise in recirculating fiber-optic delay lines," J. Lightwave Technol. 3, 20-31 (1985).
  89. A. L. Schawlow and C. H. Townes, "Infrared and optical masers," Phys. Rev. 112, 1940-1949, (1958). [CrossRef]
  90. F.M. Gardner, Phaselock Techniques, 3rd ed. (John Wiley, Hoboken, NJ, 2005).
  91. M. A. Grant, W. C. Michie, M. J. Fletcher, "The performance of optical phase-locked loops in the presence of nonnegligible loop propagation delay," J. Lightwave Technol. 5, 592-597 (1987).
  92. K. Kikuchi, "Phase-diversity homodyne detection of multilevel optical modulation with digital carrier phase estimation," J. Sel. Top. Quantum Electron. 12, 563−570 (2006).
  93. M. G. Taylor, "Accurate digital phase estimation process for coherent detection using a parallel digital processor," in Proceedings ECOC 2005, Glasgow, UK, 2005, Paper Tu4.2.6.
  94. D.-S. Ly-Gagnon, S. Tsukamoto, K. Katoh and K. Kikuchi, "Coherent detection of optical quadrature phase-shift keying signals with coherent phase estimation," J. Lightwave Technol. 24, 12-21, (2006). [CrossRef]
  95. F. J. Foschini, R. D. Gitlin and S. B. Weinstein, "On the selction of a two-dimensional signal constellation in the presence of phase jitter and Gaussian noise," Bell. Syst. Tech. J. 52, 927-965 (1973).
  96. A. Bahai, B. Saltzberg and M. Ergen, Multi-carrier Digital Communications: Theory and Applications of OFDM, 2nd Ed. (Springer, New York, 2004).
  97. R. Prasad, "OFDM for wireless communications systems," (Artech House Publishers, Boston, 2004).
  98. W. Shieh, X. Yi, and Y. Tang, "Experimental demonstration of transmission of coherent optical OFDM Systems," in Proceedings of IEEE Conference on Optical Fiber Communications, (Institute of Electrical and Electronics Engineers, Anaheim, 2007), Paper OMP2.
  99. W. Shieh and C. Athaudage, "Coherent optical orthogonal frequency division multiplexing," Electron. Lett. 42, 587−589 (2006). [CrossRef]
  100. N. Cvijetic, L. Xu and T. Wang, "Adaptive PMD compensation using OFDM in long-haul 10 Gb/s DWDM systems," in Proceedings of IEEE Conference on Optical Fiber Communications, (Institute of Electrical and Electronics Engineers, Anaheim, 2007), Paper OTuA5.
  101. A. Lowery and J. Armstrong, "Orthogonal-frequency-division multiplexing for optical dispersion compensation," in Proceedings of IEEE Conference on Optical Fiber Communications, (Institute of Electrical and Electronics Engineers, Anaheim, 2007), Paper OTuA4.
  102. W. Henkel, G. Taubock, P. Odling, P. O. Borjesson and N. Petersson, "The cyclic prefix of OFDM/DMT - an analysis," IEEE International Seminar on Broadband Communications, (Institute of Electrical and Electronic Engineers, Zurich, 2002).
  103. D. J.F. Barros and J. M. Kahn are preparing a manuscript to be called "Optimized dispersion compensation using orthogonal frequency-division multiplexing."
  104. W. Shieh, X. Yi, Y. Ma and Y. Tang, "Theoretical and experimental study on PMD-supported transmission using polarization diversity in coherent optical OFDM systems," Optics Express 15, 9936−9947 (2007). [CrossRef]
  105. C. Cover and J. Thomas, Elements of Information Theory. (John Wiley, New York, 1991).
  106. C. Y. Wong, R. S. Cheng, K. B. Letaief and R. D. Murch, "Multiuser OFDM with adaptive subcarrier, bit, and power allocation," J. Sel. Top. Commun. 17, 1747−1758 (1999).
  107. B. S. Krongold, K. Ramchandran and D. L. Jones, "Computationally efficient optimal power allocation algorithms for multicarrier communication systems," IEEE Trans. Commun. 48, 23−27 (2000). [CrossRef]
  108. J. Jang, K. B. Lee and Y.-H. Lee, "Transmit power and bit allocations for OFDM systems in a fading channel," in Proceedings of IEEE GLOBECOM, (Institute of Electrical and Electronics Engineers, San Francisco, 2003), pp. 858−862.
  109. S. Wu and Y. Bar-Ness, "OFDM systems in the presence of phase noise: consequences and solutions," IEEE Trans. Commun. 52, 1988−1996 (2004). [CrossRef]
  110. A. G. Armada and M. Calvo, "Phase noise and sub-carrier spacing effects on the performance of an OFDM communication system," IEEE Commun. Lett. 2, 11−13 (1998). [CrossRef]
  111. S. Wu and Y. Bar-Ness, "A phase noise suppression algorithm for OFDM based WLANs," IEEE Commun. Lett. 6, 535−537 (2002).
  112. H. Ochiai and H. Imai, "On the distribution of the peak-to-average power ratio in OFDM signals," IEEE Trans. Commun. 49, 282−289 (2001). [CrossRef]
  113. A. J. Lowery, "Fiber nonlinearity mitigation in optical links that use OFDM for dispersion compensation," IEEE Photon Technol. Lett. 19, 1556−1558 (2007). [CrossRef]
  114. A. J. Lowery, "Fiber nonlinearity pre- and post-compensation for long-haul optical links using OFDM," Optics Express 15, 12965−12970 (2007). [CrossRef]
  115. A. J. Lowery, S. Wang and M. Premaratne, "Calculation of power limit due to fiber nonlinearity in optical OFDM systems," Optics Express 15, 13282−13287 (2007). [CrossRef]
  116. D.-S. Ly-Gagnon, "Information recovery using coherent detection and digital signal pocessing for phase-shift-keying modulation formats in optical communication systems," M.S. Thesis, University of Tokyo (2004).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited