OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 16, Iss. 2 — Jan. 21, 2008
  • pp: 897–907

High-energy angle resolved reflection spectroscopy on three-dimensional photonic crystals of self-organized polymeric nanospheres

S. Schutzmann, I. Venditti, P. Prosposito, M. Casalboni, and M.V. Russo  »View Author Affiliations


Optics Express, Vol. 16, Issue 2, pp. 897-907 (2008)
http://dx.doi.org/10.1364/OE.16.000897


View Full Text Article

Enhanced HTML    Acrobat PDF (282 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We report on the optical characterization of three-dimensional opal-like photonic crystals made by self-organized nanospheres of poly[styrene-(co-2-hydroxyethyl methacrylate)] having a face centred cubic (fcc) structure oriented along the [111] direction. A detailed optical characterization of the samples is presented using angle resolved reflection spectroscopy in specular geometry. The investigated energies are between a/λ=0.5 and a/λ=1.5 (where a is the lattice parameter and λ is the light wavelength), a region in which both first and second-order Bragg diffraction are expected. Some interesting features as branching of the Bragg peak dispersion and high energy reflection peaks are revealed. We compare the experimental data with theoretical calculations using both Bragg diffraction and band structure approach. A comparison with recent results reported in the literature is also presented.

© 2008 Optical Society of America

OCIS Codes
(160.5470) Materials : Polymers
(260.1960) Physical optics : Diffraction theory
(160.1245) Materials : Artificially engineered materials
(050.5298) Diffraction and gratings : Photonic crystals

ToC Category:
Photonic Crystals

History
Original Manuscript: October 22, 2007
Revised Manuscript: December 10, 2007
Manuscript Accepted: December 25, 2007
Published: January 10, 2008

Citation
S. Schutzmann, I. Venditti, P. Prosposito, M. Casalboni, and M. V. Russo, "High-energy angle resolved reflection spectroscopy on three-dimensional photonic crystals of self-organized polymeric nanospheres," Opt. Express 16, 897-907 (2008)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-2-897


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. E. Yablonovitch, "Inhibited spontaneous emission in solid-state physics and electronics," Phys. Rev. Lett. 58, 2059-2062 (1987). [CrossRef] [PubMed]
  2. S. John, "Strong localization of photons in certain disordered dielectric superlattices," Phys. Rev. Lett. 58, 2486-2489 (1987). [CrossRef] [PubMed]
  3. G. Pan, R. Kesavamoorthy and S. A. Asher, "Optically nonlinear Bragg diffracting nanosecond optical switches," Phys. Rev. Lett. 78, 3860-3863 (1997). [CrossRef]
  4. K. Vynck, D. Cassagne and E. Centeno, "Superlattice for photonic band gap opening in monolayers of dielectric spheres," Opt. Express 14, 6668-6674 (2006). [CrossRef] [PubMed]
  5. Y. Nishijima, K. Ueno, S. Joudkazis, V. Mizeikis, H. Misawa, T. Tanimura and K. Maeda, "Inverse silica opal photonic crystal for optical sensing applications," Opt. Express 15, 12979-12988 (2007). [CrossRef] [PubMed]
  6. O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus and I. Kim, "Two-dimensional photonic band-gap defect mode laser," Science 284, 1819-1821 (1999). [CrossRef] [PubMed]
  7. H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato and S. Kawakami, "Superprism phenomena in photonic crystals," Phys. Rev. B 58, R10096-R10099 (1998). [CrossRef]
  8. V. Yannopapas, N. Stefanou and A. Modinos, "Theoretical analysis of the photonic band structure of face-centred cubic colloidal crystals," J. Phys.: Condens. Matter 9, 10261-10270 (1997). [CrossRef]
  9. E. Pavarini, L. C. Andreani, C. Soci, M. Galli, F. Marabelli and D. Comoretto, "Band structure and optical properties of opal photonic crystals," Phys. Rev. B  72, 045102 1-9 (2005). [CrossRef]
  10. M. Botey, M. Maymó and J. Martorell, "Band-structure determination for finite 3-D photonic crystals," Appl. Phys. B 81, 277-281 (2005). [CrossRef]
  11. A. Balestreri, L. C. Andreani and M. Agio, "Optical properties and diffraction effects in opal photonic crystals," Phys. Rev. E  74, 036603 1-8 (2006). [CrossRef]
  12. L. A. Dorado, R. A. Depine and H. Míguez, "Effect of extinction on the high-energy optical response of photonic crystals," Phys. Rev. B 75, 241101(R) 1-4 (2007). [CrossRef]
  13. A. Reynolds, F. López-Tejeira, D. Cassagne, F. J. García-Vidal, C. Jouanin and J. Sánchez-Dehesa, "Spectral properties of opal-based photonic crystals having a SiO2 matrix," Phys. Rev. B 60, 11422-11426 (1999). [CrossRef]
  14. H. M. van Driel and W. L. Vos, "Multiple Bragg wave coupling in photonic band-gap crystals," Phys. Rev. B 62, 9872-9875 (2000). [CrossRef]
  15. Y. A. Vlasov, M. Deutsch and D. J. Norris, "Single-domain spectroscopy of self-assembled photonic crystals," Appl. Phys. Lett. 76, 1627-1629 (2000). [CrossRef]
  16. S. G. Romanov, T. Maka, C. M. Sotomayor Torres, M. Müller, R. Zentel, D. Cassagne, J. Manzanares-Martinez and C. Jouanin, "Diffraction of light from thin-film polymethylmetacrylate opaline photonic crystals," Phys. Rev. E 63, 056603 1-5 (2001). [CrossRef]
  17. J. F. Galisteo-López and W. L. Vos, "Angle-resolved reflectivity of single-domain photonic crystals: Effects of disorder," Phys. Rev. E 66, 036616 1-5 (2002). [CrossRef]
  18. <jrn>. J. F. Galisteo-López, E. Palacios-Lidón, E. Castillo-Martínez and C. López, "Optical study of the pseudogap in thickness and orientation controlled artificial opals," Phys. Rev. B 68, 115109 1-8 (2003).</jrn> [CrossRef]
  19. F. García-Santamaría, J. F. Galisteo-López, P. V. Braun and C. López, "Optical diffraction and high-energy features in three-dimensional photonic crystals," Phys. Rev. B 71, 195112 1-5 (2005).</jrn> [CrossRef]
  20. J. F. Galisteo-López, M. Galli, M. Patrini, A Balestreri, L. C. Andreani and C. López, "Effective refractive index and group velocity determination of three-dimensional photonic crystals by means of white light interferometry," Phys. Rev. B 73, 125103 1-9 (2006). [CrossRef]
  21. A. V. Baryshev, A. B. Khanikaev, H. Uchida, M. Inoue and M. F. Limonov, "Interaction of polarized light with three-dimensional opal-based photonic crystals," Phys. Rev. B 73, 033103 1-4 (2006). [CrossRef]
  22. S. Wong, V. Kitaev and G. A. Ozin, "Colloidal crystal films: Advances in universality and perfection," J. Am. Chem. Soc. 125, 15589-15598 (2003). [CrossRef] [PubMed]
  23. K. Wostyn, Y. Zhao, G. de Schaetzen, L. Hellemans, N. Matsuda, K. Clays and A. Persoons, "Insertion of two-dimensional cavity into a self-assembled colloidal crystal," Langmuir 19, 4465-4468 (2003). [CrossRef]
  24. A. Chiappini, C. Armellini, A. Chiasera, M. Ferrari, Y. Jestin, M. Matterelli, M. Montagna, E. Moser, G. Nunzi Conti, S. Pelli, G.C. Righini, M. Clara Gonçalves and R.M. Almeida, "Design of photonic structures by sol-gel-derived silica nanospheres," J. Non-Cryst. Solids 353, 674-678 (2007). [CrossRef]
  25. O. L. J. Pursiainen, J. J. Baumberg, H. Winkler, B. Viel, B. Spahn and T. Rhul, "Nanoparticle-tuned structural color from polymer opal," Opt. Express 15, 9553-9561 (2007) [CrossRef] [PubMed]
  26. J. F. Galisteo, F. García-Santamaría, D. Golmayo, B. H. Juárez, C. López and E. Palacios, "Self-assembly approach to optical metamaterials," J. Opt. A: Pure Appl. Opt. 7, S244-S254 (2005). [CrossRef]
  27. H. Míguez, V. Kitaev and G. A. Ozin, "Band spectroscopy of colloidal photonic crystal films," Appl. Phys. Lett. 84, 1239-1241 (2004). [CrossRef]
  28. C. López, "Materials aspects of photonic crystals," Adv. Mater. 15, 1679-1704 (2003). [CrossRef]
  29. C. Reese and S. Asher, "Emulsifier-free emulsion polymerization produces highly charged, monodisperse particles for near infrared photonic crystals," J. Colloid Interface Sci. 248, 41-46 (2002). [CrossRef]
  30. M. Okubo, T. Suzuki and Y. Fukuhara, "Estimation of heterogeneous surface structure of submicron-sized, composite polymer particles consisting of hydrophobic and hydrophilic components by atomic force microcopy," Colloid. Polym. Sci. 281, 569-574 (2003). [CrossRef]
  31. N. W. Ashcroft and N. D. Mermin, Solid State Physics, (Saunders, New York, 1976).
  32. K. Wostyn, Y. Zhao, B. Yee, K Clays, A. Persoons, G. de Schaetzen and L. Hellemans, "Optical properties and orientation of arrays of polystyrene spheres deposited using convective self-assembly," J. Chem. Phys. 118, 10752-10757 (2003). [CrossRef]
  33. J. F. Galisteo-López and C. López, "High-energy optical response of artificial opals," Phys. Rev. B70, 035108 1-6 (2004). [CrossRef]
  34. W. L. Vos and H. M. van Driel, "Higher order Bragg diffraction by strongly photonic fcc crystals: onset of a photonic bandgap," Phys. Lett. A 272, 101-106 (2000). [CrossRef]
  35. M. Egen and R. Zentel, "Surfactant-free emulsion polymerization of various methacrylates: towards monodisperse colloids for polymer opals," Macromol. Chem Phys. 205, 1479-1488 (2004). [CrossRef]
  36. I. Venditti, PhD Thesis (University of Rome La Sapienza, 2007).
  37. H. Fujiwara, Spectroscopic Ellipsometry: Principles and Applications (Wiley, Chichester, 2007).
  38. S. Middleman and A. K. Hochberg, Process Engineering Analysis in Semiconductor Device Fabrication, (McGraw-Hill, New York, 1993)
  39. S. Bosch, J. Ferré-Borrull and J. Sancho-Parramon, "A general-purpose software for optical characterization of thin films: specific features for microelectronic applications," Solid State Electron. 45, 703-709 (2001). [CrossRef]
  40. P. Jiang, G. N. Ostojic, R. Narat, D. M. Mittleman and V. L. Colvin, "The fabrication and bandgap engineering of photonic multilayers," Adv. Mater. 13, 389-393 (2001). [CrossRef]
  41. http://ab-initio.mit.edu/mpb/.
  42. S. G. Johnson and J. D. Joannopoulos, "Bloch-iterative frequency-domain methods for Maxwell’s equations in a planewave basis," Opt. Express 8, 173-190 (2001). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited