OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 16, Iss. 2 — Jan. 21, 2008
  • pp: 908–919

Phase-contrast tomography of single-material objects from few projections

G.R. Myers, D.M. Paganin, T.E. Gureyev, and S.C. Mayo  »View Author Affiliations

Optics Express, Vol. 16, Issue 2, pp. 908-919 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (983 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A method is presented for quantitative polychromatic cone-beam phase-contrast tomographic imaging of a single-material object from few projections. This algorithm exploits the natural combination of binary tomography with a phase-retrieval method that makes explicit use of the single-material nature of the sample. Such consistent use of a priori knowledge reduces the number of required projections, implying significantly reduced dose and scanning time when compared to existing phase-contrast tomography methods. Reconstructions from simulated data sets are used to investigate the effects of noise and establish a minimum required number of projections. An experimental demonstration is then given, using data from a point-projection X-ray microscope. Here, the complex distribution of refractive index in a sample containing several nylon fibers with diameters between 100 µm and 420 µm is reconstructed at a spatial resolution of ~4 µm from 20 polychromatic phase-contrast projection images with a mean photon energy of 8.4 keV.

© 2008 Optical Society of America

OCIS Codes
(100.5070) Image processing : Phase retrieval
(100.6950) Image processing : Tomographic image processing
(110.4980) Imaging systems : Partial coherence in imaging
(340.7440) X-ray optics : X-ray imaging
(090.1995) Holography : Digital holography
(110.3200) Imaging systems : Inverse scattering

ToC Category:
Imaging Systems

Original Manuscript: October 23, 2007
Revised Manuscript: December 6, 2007
Manuscript Accepted: December 16, 2007
Published: January 10, 2008

Virtual Issues
Vol. 3, Iss. 2 Virtual Journal for Biomedical Optics

G. R. Myers, D. M. Paganin, T. E. Gureyev, and S. C. Mayo, "Phase-contrast tomography of single-material objects from few projections," Opt. Express 16, 908-919 (2008)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. F. Natterer, The Mathematics of Computerized Tomography (Wiley, New York, 1986).
  2. E. Wolf, "Three-dimensional structure determination of semi-transparent objects from holographic data," Opt. Commun. 1, 153-156 (1969). [CrossRef]
  3. A. J. Devaney, "Reconstructive tomography with diffracting wave-fields," Inv.Problems 2, 161-183 (1986). [CrossRef]
  4. A. Momose, T. Takeda, and Y. Itai, "Phase-contrast X-ray computed tomography for observing biological specimens and organic materials," Rev. Sci. Instrum. 66, 1434-1436 (1995). [CrossRef]
  5. U. Bonse and F. Busch, "X-ray computed microtomography (µCT) using synchrotron radiation (SR)," Prog. Biophys. Molec. Biol. 65, 133-169 (1996). [CrossRef]
  6. C. Raven, A. Snigirev, I. Snigireva, P. Spanne, A. Souvorov, and V. Kohn, "Phase-contrast microtomography with coherent high-energy synchrotron x rays," Appl. Phys. Lett. 69, 1826-1828 (1996). [CrossRef]
  7. P. Cloetens, W. Ludwig, J. Baruchel, D. Van Dyck, J. Van Landuyt, J. P. Guigay, and M. Schlenker, "Holotomography: Quantitative phase tomography with micrometer resolution using hard synchrotron radiation x rays," Appl. Phys. Lett. 75, 2912-2914 (1999). [CrossRef]
  8. A. V. Bronnikov, "Reconstruction formulas in phase-contrast tomography," Opt. Commun. 171, 239-244 (1999). [CrossRef]
  9. F. A. Dilmanian, Z. Zhong, B. Ren, X. Y. Wu, L. D. Chapman, I. Orion, and W. C.  Thomlinson, "Computed tomography of x-ray index of refraction using the diffraction enhanced imaging method," Phys. Med. Biol. 45, 933-946 (2000). [CrossRef] [PubMed]
  10. K. M. Pavlov, C. M. Kewish, J. R. Davis, and M. J. Morgan, "A variant on the geometrical optics approximation in diffraction enhanced tomography," J. Phys. D: Appl. Phys. 34, A168-A172 (2001). [CrossRef]
  11. S. C. Mayo, T. J. Davis, T. E. Gureyev, P. R. Miller, D. Paganin, A. Pogany, A. W.  Stevenson, and S. W. Wilkins, "X-ray phase-contrast microscopy and microtomography," Opt. Express 11, 2289-2302 (2003). [CrossRef] [PubMed]
  12. M. A. Anastasio, D. Shi, Y. Huang, and G. Gbur, "Image reconstruction in spherical-wave intensity diffraction tomography," J. Opt. Soc. Am. A 22, 2651-2661 (2005). [CrossRef]
  13. X. Wu and H. Liu, "X-ray cone-beam phase tomography formulas based on phase-attenuation duality," Opt. Express 13, 6000-6014 (2005). [CrossRef] [PubMed]
  14. A. Momose, W. Yashiro, Y. Takeda, Y. Suzuki, and T. Hattori, "Phase tomography by X-ray Talbot interferometry for biological imaging," Jpn. J. Appl. Phys. 45, 5254-5262 (2006). [CrossRef]
  15. T. E. Gureyev, D. M. Paganin, G. R. Myers, Ya. I. Nesterets, and S. W. Wilkins, "Phase-and-amplitude computer tomography," Appl. Phys. Lett. 89, 034102 (2006). [CrossRef]
  16. F. Pfeiffer, C. Kottler, O. Bunk, and C. David, "Hard x-ray phase tomography with low-brilliance sources," Phys. Rev. Lett. 98, 108105 (2007). [CrossRef] [PubMed]
  17. M. Engelhardt, J. Baumann, M. Schuster, C. Kottler, F. Pfeiffer, O. Bunk, and C. David, "High-resolution differential phase contrast imaging using a magnifying projection geometry with a microfocus x-ray source," Appl. Phys. Lett. 90, 224101 (2007). [CrossRef]
  18. D. M. Paganin, Coherent X-Ray Optics (Oxford University Press, New York, 2006).
  19. G. R. Myers, S. C. Mayo, T. E. Gureyev, D. M. Paganin, and S. W. Wilkins, "Polychromatic cone-beam phase-contrast tomography," Phys. Rev. A 76, 045804 (2007). [CrossRef]
  20. T. E. Gureyev, Y. I. Nesterets, K. M. Pavlov, and S. W. Wilkins, "Computed tomography with linear shift-invariant optical systems," J. Opt. Soc. Am. A 24, 2230-2241 (2007). [CrossRef]
  21. J. Miao, C.-C. Chen, C. Song, Y. Nishino, Y. Kohmura, T. Ishikawa, D. Ramunno-Johnson, T.-K. Lee, and S. H. Risbud, "Three-dimensional GaN-Ga2O3 core shell structure revealed by X-ray diffraction microscopy," Phys. Rev. Lett. 97, 215503 (2006). [CrossRef] [PubMed]
  22. A. V. Bronnikov, "Phase contrast CT: Fundamental theorem and fast image reconstruction algorithms," Proc. SPIE 6318, 63180Q (2006). [CrossRef]
  23. F. Pfeiffer, O. Bunk, C. Kottler, and C. David, "Tomographic reconstruction of three-dimensional objects from hard X-ray differential phase contrast projection images," Nucl. Instrum. Methods Phys. Res. A 580, 925-928 (2007). [CrossRef]
  24. A. Groso, R. Abela, and M. Stampanoni, "Implementation of a fast method for high resolution phase contrast tomography," Opt. Express 14, 8103-8110 (2006). [CrossRef] [PubMed]
  25. R. Fitzgerald, "Phase-sensitive x-ray imaging," Phys. Today 53(7), 23-26 (2000). [CrossRef]
  26. J. Řeháček, Z. Hradil, J. Peřina, S. Pascazio, P. Facchi, and M. Zawisky, "Advanced neutron imaging and sensing," Adv. Imaging Electron. Phys. 142, 53-157 (2006). [CrossRef]
  27. S. W. Wilkins, T. E. Gureyev, D. Gao, A. Pogany, and A. W. Stevenson, "Phase-contrast imaging using polychromatic hard x-rays," Nature 384, 335-338 (1996). [CrossRef]
  28. D. Paganin, S. C. Mayo, T. E. Gureyev, P. R. Miller, and S. W. Wilkins, "Simultaneous phase and amplitude extraction from a single defocused image of a homogeneous object," J. Microsc. 206, 33-40 (2002). [CrossRef] [PubMed]
  29. L. D. Turner, K. P. Weber, D. Paganin, and R. E. Scholten, "Off-resonant defocus-contrast imaging of cold atoms," Opt. Lett. 29, 232-234 (2004). [CrossRef] [PubMed]
  30. T. E. Gureyev, A. Pogany, D. M. Paganin, and S. W. Wilkins, "Linear algorithms for phase retrieval in the Fresnel region," Opt. Commun. 2531, 53-70 (2004). [CrossRef]
  31. L. A. Feldkamp, L. C. Davis, and J. W. Kress, "Practical cone-beam algorithm," J. Opt. Soc. Am. A 1, 612-619 (1984). [CrossRef]
  32. X. Yan and R. M. Leahy, "Derivation and analysis of a filtered backprojection algorithm for cone beam projection data," IEEE Trans. Med. Im. 10, 462-472 (1991). [CrossRef]
  33. G. R. Myers, T. E. Gureyev, and D. M. Paganin, "Stability of phase-contrast tomography," J. Opt. Soc. Am. A 24, 2516-2526 (2007). [CrossRef]
  34. G. T. Herman and A. Kuba, eds., Discrete Tomography: Foundations, Algorithms and Applications (Birkhäuser, Boston, 1999).
  35. F. Natterer and F. Wübbeling, Mathematical methods in Image Reconstruction (SIAM, Philadelphia, 2001).
  36. R. J. Gardner and P. Gritzmann, "Discrete tomography: Determination of finite sets by x-rays," Trans. Amer. Math. Soc. 349, 2271-2295 (1997). [CrossRef]
  37. P. Gritzmann, D. Prangenberg, S. de Vries, and M. Wiegelmann, "Success and failure of certain reconstruction and uniqueness algorithms in discrete tomography," Int. J. Imag. Syst. Technol. 9, 101-109 (1998). [CrossRef]
  38. P. Fishburn, P. Schwander, L. Shepp, and R. J. Vanderbei, "The discrete Radon transform and its approximate inversion via linear programming," Discrete Appl. Math. 75, 39-61 (1997). [CrossRef]
  39. P. Gritzmann, S. de Vries, and M. Wiegelmann, "Approximating binary images from discrete x-rays," SIAM J. Optimization 11, 522-546 (2000). [CrossRef]
  40. S. Weber, T. Schüle, J. Hornegger, and C. Schnörr, "Binary tomography by iterating linear programs from noisy projections," Lecture Notes in Comput. Sci. 3322, 38-51 (2004) [CrossRef]
  41. T. Schüle, C. Schnörr, S. Weber, and J. Hornegger, "Discrete tomography by convex-concave regularization and D.C. programming," Discrete Appl. Math. 151, 229-243 (2005). [CrossRef]
  42. K. J. Batenburg, "A network flow algorithm for binary image reconstruction from few projections," Lecture Notes in Comput.Sci. 4245, 86-97 (2006). [CrossRef]
  43. L. Hajdu and R. Tijdeman, "An algorithm for discrete tomography," Linear Algebra Appl. 339, 119-128, (2001). [CrossRef]
  44. A. Alpers and P. Gritzmann, "On the degree of ill-posedness in discrete tomography," preprint, 2004.
  45. A. Alpers, P. Gritzmann, and L. Thorens, "Stability and instability in discrete tomography," Lecture Notes in Comput. Sci. 2243, 175-186 (2001). [CrossRef]
  46. A. Alpers and P. Gritzmann, "On stability, error correction, and noise compensation in discrete tomography," SIAM J. Discrete Math. 20, 227-239 (2006). [CrossRef]
  47. R. J. Gardner, P. Gritzmann, and D. Prangenberg, "On the computational complexity of reconstructing lattice sets from their X-rays," Discrete Math.  202, 45-71 (1999). [CrossRef]
  48. P. Gritzmann and S. de Vries, "Reconstructing crystalline structures from few images under high resolution transmission electron microscopy," in Mathematics: Key Technology for the Future, W. Jäger and H.-J. Krebs, eds, (Springer-Verlag, Berlin, 2003) pp. 441-459. [CrossRef]
  49. A. Alpers, H. F. Poulsen, E. Knudsen, and G. T. Herman, "A discrete tomography algorithm for improving the quality of 3DXRD grain maps," J. Appl. Cryst. 39, 582-588 (2006). [CrossRef]
  50. T. E. Gureyev, D. M. Paganin, A. W. Stevenson, S. C. Mayo, and S. W. Wilkins, "Generalized eikonal of partially coherent beams and its use in quantitative imaging," Phys. Rev. Lett. 93, 068103 (2004). [CrossRef] [PubMed]
  51. E. M. Friis, P. R. Crane, K. R. Pedersen, S. Bengtson, P. C. J. Donoghue, G. W. Grimm, and M. Stampanoni, "Phase-contrast X-ray microtomography links Cretaceous seeds with Gnetales and Bennettitales," Nature 450, 549-553 (2007). [CrossRef] [PubMed]
  52. D. S. Lalush and B. M. W. Tsui, "Improving the convergence of iterative filtered back projection algorithms," Med. Phys. 21, 1283-1286 (1994). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited