OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 16, Iss. 2 — Jan. 21, 2008
  • pp: 920–926

Optically modulated internal strain in InGaN quantum dots grown on SINx nano masks

H. J. Chang, T. T. Chen, L. L. Huang, Y. F. Chen, J. Y. Tsai, T. C. Wang, and H. C. Kuo  »View Author Affiliations

Optics Express, Vol. 16, Issue 2, pp. 920-926 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (152 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Optically modulated internal strain has been observed in InGaN quantum dots (QDs) deposited on SINx nano masks. The modulated internal strain can induce a number of intriguing effects, including the change of refractive index and the redshift of InGaN A1(LO) phonon. The underlying mechanism can be well accounted for in terms of the variation of internal strain through the converse piezoelectric effect arising from the screening of the internal electric field due to spatial separation of photoexcited electrons and holes. Our results point out a convenient way for the fine tuning of physical properties in nitride-based semiconductor nanostructures, which is very important for high quality optoelectronic devices.

© 2008 Optical Society of America

OCIS Codes
(250.5230) Optoelectronics : Photoluminescence
(300.6450) Spectroscopy : Spectroscopy, Raman

ToC Category:

Original Manuscript: July 9, 2007
Revised Manuscript: August 16, 2007
Manuscript Accepted: September 28, 2007
Published: January 10, 2008

H. J. Chang, T. T. Chen, L. L. Huang, Y. F. Chen, J. Y. Tsai, T. C. Wang, and H. C. Kuo, "Optically modulated internal strain in InGaN quantum dots grown on SiNx nano masks," Opt. Express 16, 920-926 (2008)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. S. Nakamura and G. Fasol, The Blue Laser Diode (Springer, Berlin, 1997).
  2. H. Morkoc, S. Strite, G. B. Gao, M. E. Lin, B. Sverdlov, and M. Burns, "Large-band-gap SiC, III-V nitride, and II-VI ZnSe-based semiconductor device technologies," J. Appl. Phys. 76, 1363-1398 (1994). [CrossRef]
  3. S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Yamada, T. Matsusshita, H. Kiyoko, and Y. Sugimoto, "InGaN-based multi-quantum-well-structure laser diodes," Jpn. J. Appl. Phys. 35, L74-L76 (1996). [CrossRef]
  4. M. Sugisaki, H. W. Ren, S. V. Nair, K. Nishi, and Y. Masumoto, "External-field effects on the optical spectra of self-assembled InP quantum dots," Phys. Rev. B 66, 235309 (2002). [CrossRef]
  5. S. Raymond, J. P. Reynolds, J. L. Merz, S. Fafard, Y. Feng, and S. Charbonneau, "Asymmetric stark shift in AlInAs/AlGaAs self-assembled dots," Phys. Rev. B 58, R13415-R13418 (1998). [CrossRef]
  6. M. Sugisaki, H.-W. Ren, S.V. Nair, K. Nishi, S. Sugou, T. Okuno, and Y. Masumoto, "Optical anisotropy in self-assembled InP quantum dots," Phys. Rev. B 59, R5300-R5303 (1999). [CrossRef]
  7. P. Michler, A. Kiraz, C. Becher, W. V. Schoenfeld, P. M. Petroff, L. Zhang, E. Hu, and A. Imamoğlu, "A quantum dot single-photon turnstile device," Science 290, 2282-2285 (2000). [CrossRef] [PubMed]
  8. C. Santori, M. Pelton, G. Solomon, Y. Dale, and Y. Yamamoto, "Triggered single photons from a quantum dot," Phys. Rev. Lett. 86, 1502-1505 (2001). [CrossRef] [PubMed]
  9. J. Shi, C. Xia, S. Wei, and Z. Liu, "Exciton states in wurtzite InGaN strained coupled quantum dots: Effects of piezoelectricity and spontaneous polarization," J. Appl. Phys. 97, 083705 (2005). [CrossRef]
  10. J. F. Nye, Physical Properties of Crystals, (Oxford, University Press, London, 1972).
  11. A. Shikanai, T. Deguchi, T. Sota, T. Kuroda, A. Tackeuchi, S. Chichibu, and S. Nakamura, "A pump and probe study of photoinduced internal field screening dynamics in an AlGaN/GaN single-quantum-well structure," Appl. Phys. Lett. 76, 454- 456 (2000). [CrossRef]
  12. R. C. Tu, C. J. Tun, C. C. Chuo, B. C. Lee, C. E. Tsai, T. C. Wang, J. Chi, C. P. Lee and G. C. Chi, "Ultra-high-density InGaN quantum dots grown by metalorganic chemical vapor deposition," Jpn. J. Appl. Phys. 43, L264-L266 (2004). [CrossRef]
  13. F. Della Sala, A. Di Carlo, P. Lugli, F. Bernardini, V. Fiorentini, R. Scholz, and J.-M. Jancu, "Free-carrier screening of polarization fields in wurtzite GaN/InGaN laser structures," Appl. Phys. Lett. 74, 2002-2004 (1999). [CrossRef]
  14. D. C. Marra, E. S. Aydil, S. J. Joo, E. Yoon, and V. I. Srdanov, "Angle-dependent photoluminescence spectra of hydrogenated amorphous silicon thin films," Appl. Phys. Lett. 77, 3346-3348 (2000). [CrossRef]
  15. C. H. Chen, W. H. Chen, Y. F. Chen, and T. Y. Lin, "Piezoelectric, electro-optical, and photoelastic effects in InGaN/GaN multiple quantum wells," Appl. Phys. Lett. 83, 1770-1772 (2003). [CrossRef]
  16. H. J. Chang, C. H. Chen, L. Y. Huang, Y. F. Chen, and T. Y. Lin, "In-plane optical anisotropy in InGaN/GaN multiple quantum wells induced by Pockels effect," Appl. Phys. Lett. 86, 011924 (2005). [CrossRef]
  17. A. G. Kontos, Y. S. Raptis, N. T. Pelekanos, A. Georgakilas, E. Bellet-Amalric, and D. Jalabert, "Micro-Raman characterization of InGaN/GaN/Al2O3 heterostructures," Phys. Rev. B 72, 155336 (2005). [CrossRef]
  18. V. Darakchieva, P. P. Paskov, E. Valcheva, T. Paskova, B. Monemar, M. Schubert, H. Lu, and W. J. Schaff, "Deformation potentials of the E1(TO) and E2 modes of InN," Appl. Phys. Lett. 84, 3636-3638 (2004). [CrossRef]
  19. F. C. Wang, C. L. Cheng, Y. F. Chen, C. F. Huang, and C. C. Yang, "Residual thermal strain in thick GaN epifilms revealed by cross-sectional Raman scattering and cathodoluminescence spectra," Semicond. Sci. Technol. 22896-899 (2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited