OSA's Digital Library

Optics Express

Optics Express

  • Editor: Martijn de Sterke
  • Vol. 16, Iss. 20 — Sep. 29, 2008
  • pp: 15312–15324

Light scattering from 2D arrays of monodispersed Ag-nanoparticles separated by tunable nano-gaps: spectral evolution and analytical analysis of plasmonic coupling

Sajal Biring, Huai-Hsien Wang, Juen-Kai Wang, and Yuh-Lin Wang  »View Author Affiliations


Optics Express, Vol. 16, Issue 20, pp. 15312-15324 (2008)
http://dx.doi.org/10.1364/OE.16.015312


View Full Text Article

Enhanced HTML    Acrobat PDF (402 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Two dimensional arrays of monodispersed Ag-nanoparticles separated by different gaps with sub-10 nm precision are fabricated on anodic alumina substrates with self-organized pores. Light scattering spectra from the arrays evolve with the gaps, revealing plasmonic coupling among the nanoparticles, which can be satisfactorily interpreted by analytical formulae derived from generic dipolar approximation. The general formulism lays down a foundation for predicting the Q factor of an array of metallic nano-particles and its geometric characteristics.

© 2008 Optical Society of America

OCIS Codes
(290.5850) Scattering : Scattering, particles
(160.4236) Materials : Nanomaterials

ToC Category:
Scattering

History
Original Manuscript: March 31, 2008
Revised Manuscript: April 28, 2008
Manuscript Accepted: May 15, 2008
Published: September 15, 2008

Citation
Sajal Biring, Huai-Hsien Wang, Juen-Kai Wang, and Yuh-Lin Wang, "Light scattering from 2D arrays of monodispersed Ag-nanoparticles separated by tunable nano-gaps: spectral evolution and analytical analysis of plasmonic coupling," Opt. Express 16, 15312-15324 (2008)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-20-15312


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. Faraday, "On the color of colloidal gold," Phil. Trans. R. Soc. London 147, 145-181 (1857). [CrossRef]
  2. G. Mie, "Beitrage zur optik truber medien speziel kolloidaler metallosungen," Ann. Phys. 25, 377-445 (1908). [CrossRef]
  3. M. Geissler and Y. Xia, "Patterning: Principles and some new developments," Adv. Mater. 16, 1249-1269 (2004). [CrossRef]
  4. W. L. Barnes, A. Dereux, and T. W. Ebbesen, "Surface plasmon subwavelength optics," Nature 424,824-830 (2003). [CrossRef] [PubMed]
  5. H. Raether, Excitation of Plasmons and Interband Transitions by Electrons (Springer-Verlag, Berlin, 1980), pp. 116.
  6. M. Moskovits, "Surface enhanced spectroscopy," Rev. Mod. Phys. 57, 783-826 (1985). [CrossRef]
  7. J. C. Hulteen and R. P. Van Duyne, "Nanosphere lithography: A materials general fabrication process for periodic particle array surfaces," J. Vac. Sci. Technol. A 13, 1553-1558 (1995).
  8. H. H. Wang,  et al., "Highly Raman Enhancing-Substrates Based on Silver nanoparticle Arrays with Tunable Sub-10 nm Gaps," Adv. Mater. 18, 491-495 (2006). [CrossRef]
  9. S. Nie and S. R. Emory, "Probing Single Molecules and Single Nanoparticles by Surface-Enhanced Raman Scattering," Science 275, 1102-1106 (1997). [CrossRef] [PubMed]
  10. K. H. Su, Q. H. Wei, X. Zhang, J. J. Mock, D. R. Smith, and S. Schultz, "Interparticle coupling effects on plasmon resonances of nanogold particles," Nano Lett. 3, 1087-1090 (2003). [CrossRef]
  11. L.  Gunnarsson, T.  Rindzevicious, J. Prikulis, B. Kasemo, M. Käll, S. Zou, and G. C. Schatz, "Confined Plasmons in Nanofabricated Single Silver Particle Pairs: Experimental Observations of Strong Interparticle Interactions," J. Phys. Chem. B 109, 1079-1087 (2005).
  12. P. K. Jain, W. Huang, and M. A. El-Sayed, "On the universal scaling behavior of the distance decay of plasmon coupling in metal nanoparticle pairs: A Plasmon Ruler Equation," Nano Lett. 7, 2080-2088 (2007). [CrossRef]
  13. C. L. Haynes, A. D. McFarland, L. L. Zao, R. P. Von Duyne, G. C. Schatz, L. Gunnarsson, J. Prikulis, B. Kasemo, and M. Käll, "Nanoparticle Optics: The Importance of Radiative Dipole Coupling in Two-Dimensional Nanoparticle Arrays," J. Phys. Chem. B 107, 7337-7342 (2003).
  14. W.  Rechberger, A. Hohenau, A. Leitner, J. R. Krenn, B. Lamprecht, and F. R. Aussenegg, "Optical properties of two interacting gold nanoparticles," Opt. Commun. 220, 137-141 (2003). [CrossRef]
  15. J. P. Kotmann and O. J. F. Martin, "Plasmon resonant coupling in metallic nanowires," Opt. Express 8, 655-663 (2001). [CrossRef]
  16. X. -D. Xiang,  et al., "A Combinatorial Approach to Materials Discovery," Science 268, 1738-1740 (1995). [CrossRef] [PubMed]
  17. B. N. J. Persson and A. Liebsch, "Optical properties of two-dimensional systems of randomly distributed particles," Phys. Rev. B 28, 4247-4254 (1983).
  18. V. A. Markel, "Coupled Dipole approach to Scattering of Light from a One-Diemnsional Periodic Dipole Structure," J. Mod. Opt. 40, 2281-2291 (1993). [CrossRef]
  19. see Appendix.
  20. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983), pp. 130.
  21. J. D. Jackson, Classical Electrodynamics, 3rd ed. (Wiley, New York, 1999), pp. 371.
  22. J. D. Jackson, Classical Electrodynamics, 3rd ed. (Wiley, New York, 1999), pp. 407.
  23. Y. Liu, J. Lin, G. Huang, Y. Guo, and C. Duan, "Simple empirical analytical approximation to the Voigt profile," J. Opt. Soc. Am. B 18, 666-672 (2001).
  24. E. D. Palik, Handbook of Optical Constants of Solid (Academic Press, London, 1985), pp. 353.
  25. J. J. Olivero and R. L. Longbothum, "Empirical fits to the Voigt linewidth: A brief review" J. Quant. Spectrosc. Radiat. Transfer 17, 233-236 (1977). [CrossRef]
  26. B. T. Draine, "The Discrete-Dipole Approxiamtion and its Application to Interstellar graphite Grains," Astrophys. J. 333, 848-872 (1988). [CrossRef]
  27. M. J. Collinge and B. T. Draine, "Discrete-dipole approximation with polarizabilities that account for both finite wavelength and target geometry," J. Opt. Soc. Am. A 21, 2023-2028 (2004). [CrossRef]
  28. S. Zou and G. C. Schatz, Response to comment on "Silver nanoparticle array structures that produce remarkable narrow plasmon line shapes,"J. Chem. Phys. 102, 122 (2005).
  29. B. Khlebtsov, A. Melnikov, B. Zharov, and N. Khlebtsov, "Absorption and scattering of light by a dimmer of metal nanospheres: Comparison of dipole and multipole approaches," Nanotech. 17, 1437-1445 (2006). [CrossRef]
  30. C. Voisin, N. D. Fatti, D. Christofilos, and F. Vallee, "Ultrafast Electron Dynamics and Optical Nonlinearities in Metal Nanoparticles," J. Phys. Chem. B,  105, 2264-2280 (2001).
  31. J. D. Jackson, Classical Electrodynamics, 3rd ed. (Wiley, New York, 1999), pp. 410.
  32. D. W. Thompson, "Optical characterization of porous alumina from vacuum ultraviolet to midinfrared," J. Appl. Phys. 97, 113511 (2005). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited