OSA's Digital Library

Optics Express

Optics Express

  • Editor: Martijn de Sterke
  • Vol. 16, Iss. 20 — Sep. 29, 2008
  • pp: 15353–15365

Electronic dispersion compensation using full optical-field reconstruction in 10Gbit/s OOK based systems

J. Zhao, M. E. McCarthy, and A. D. Ellis  »View Author Affiliations


Optics Express, Vol. 16, Issue 20, pp. 15353-15365 (2008)
http://dx.doi.org/10.1364/OE.16.015353


View Full Text Article

Enhanced HTML    Acrobat PDF (250 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We investigate the design of electronic dispersion compensation (EDC) using full optical-field reconstruction in 10Gbit/s on-off keyed transmission systems limited by optical signal-to-noise ratio (OSNR). By effectively suppressing the impairment due to low-frequency component amplification in phase reconstruction, properly designing the transmission system configuration to combat fiber nonlinearity, and successfully reducing the vulnerability to thermal noise, a 4.8dB OSNR margin can be achieved for 2160km single-mode fiber transmission without any optical dispersion compensation. We also investigate the performance sensitivity of the scheme to various system parameters, and propose a novel method to greatly enhance the tolerance to differential phase misalignment of the asymmetric Mach-Zehnder interferometer. This numerical study provides important design guidelines which will enable full optical-field EDC to become a cost-effective dispersion compensation solution for future transparent optical networks.

© 2008 Optical Society of America

OCIS Codes
(060.2330) Fiber optics and optical communications : Fiber optics communications
(060.4080) Fiber optics and optical communications : Modulation

ToC Category:
Fiber Optics and Optical Communications

History
Original Manuscript: June 19, 2008
Revised Manuscript: July 25, 2008
Manuscript Accepted: July 25, 2008
Published: September 15, 2008

Citation
J. Zhao, M. E. McCarthy, and A. D. Ellis, "Electronic dispersion compensation using full optical-field reconstruction in 10Gbit/s OOK based systems," Opt. Express 16, 15353-15365 (2008)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-20-15353


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. Schube and M. Mazzini, "Testing and interoperability of 10GBASE-LRM optical interfaces," IEEE Commun. Mag. 45, s26-s31 (2007). [CrossRef]
  2. F. Buchali, H. Bulow, W. Baumert, R. Ballentin, and T. Wehren, "Reduction of the chromatic dispersion penalty at 10Gbit/s by integrated electronic equalizers," in Proc. Optical Fiber Communication Conference (2000), paper ThS1-1.
  3. A. Farbert, S. Langenbach, N. Stojanovic, C. Dorschky, T. Kupfer, C. Schulien, J.-P. Elbers, H. Wernz, H. Griesser, and C. Glingener, "Performance of a 10.7 Gb/s receiver with digital equaliser using maximum likelihood sequence estimation," European Conference on Optical Communication (2004), PDP Th4.1.5.
  4. D. McGhan, M. O'Sullivan, M. Sotoodeh, A. Savchenko, C. Bontu, M. Belanger, and K. Roberts, "Electronic dispersion compensation," in Proc. Optical Fiber Communication Conference (2006), paper OWK1. [CrossRef]
  5. G. Bosco and P. Poggiolini, "Long-distance effectiveness of MLSE IMDD receivers," IEEE Photo. Technol. Lett. 18, 1037-1039 (2006). [CrossRef]
  6. M. G. Taylor, "Coherent detection for optical communications using digital signal processing," in Proc. Optical Fiber Communication Conference (2007), paper OMP1.
  7. A. D. Ellis and M. E. McCarthy, "Receiver-side electronic dispersion compensation using passive optical field detection for low cost 10Gbit/s 600 km-reach applications," in Proc. Optical Fiber Communication Conference (2006), paper OTuE4.
  8. X. Liu, S. Chandrasekhar, and A. Leven, "Digital self-coherent detection", Opt. Express 16, 792-803 (2008). [CrossRef] [PubMed]
  9. N. Kikuchi, K. Mandai, S. Sasaki, and K. Sekine, "Proposal and first experimental demonstration of digital incoherent optical field detector for chromatic dispersion compensation," European Conference on Optical Communication (2006), PDP Th4.4.4.
  10. A. Polley and S. E. Ralph, "Receiver-side adaptive opto-electronic chromatic dispersion compensation," in Proc. Optical Fiber Communication Conference (2007), paper JThA51.
  11. J. Zhao, M. E. McCarthy, P. Gunning, and A. D. Ellis, "Dispersion tolerance enhancement in electronic dispersion compensation using full optical-field reconstruction," in Proc. Optical Fiber Communication Conference (2008), paper OWL3.
  12. H. Haunstein and R. Urbansky, "Application of electronic equalization and error correction in lightwave systems," European Conference on Optical Communication (2004), paper Th1.5.1.
  13. M. C. Jeruchim, "Techniques for estimating the bit error rate in the simulation of digital communication systems," IEEE J. Sel. Areas Commun. SAC-2, 153-170 (1984). [CrossRef]
  14. X. Liu and D. A. Fishman, "A fast and reliable algorithm for electronic pre-equalization of SPM and chromatic dispersion," in Proc. Optical Fiber Communication Conference (2006), paper OThD4.
  15. B. Franz, F. Buchali, D. Rosener, and H. Bulow, "Adaptation techniques for electronic equalizers for the mitigation of time-variant distortions in 43Gbit/s optical transmission systems," in Proc. Optical Fiber Communication Conference (2007), paper OMG1.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited