OSA's Digital Library

Optics Express

Optics Express

  • Editor: Martijn de Sterke
  • Vol. 16, Iss. 20 — Sep. 29, 2008
  • pp: 15388–15401

Transformations of continuously self-focusing and continuously self-defocusing dissipative solitons

J. M. Soto-Crespo, N. Akhmediev, N. Devine, and C. Mejía-Cortés  »View Author Affiliations


Optics Express, Vol. 16, Issue 20, pp. 15388-15401 (2008)
http://dx.doi.org/10.1364/OE.16.015388


View Full Text Article

Enhanced HTML    Acrobat PDF (934 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Dissipative media admit the existence of two types of stationary self-organized beams: continuously self-focused and continuously self-defocused. Each beam is stable inside of a certain region of its existence. Beyond these two regions, beams loose their stability, and new dynamical behaviors appear. We present several types of instabilities related to each beam configuration and give examples of beam dynamics in the areas adjacent to the two regions. We observed that, in one case beams loose the radial symmetry while in the other one the radial symmetry is conserved during complicated beam transformations.

© 2008 Optical Society of America

OCIS Codes
(190.3100) Nonlinear optics : Instabilities and chaos
(190.6135) Nonlinear optics : Spatial solitons

ToC Category:
Nonlinear Optics

History
Original Manuscript: July 18, 2008
Manuscript Accepted: August 27, 2008
Published: September 15, 2008

Citation
J. M. Soto-Crespo, N. Akhmediev, N. Devine, and C. Mejía-Cortés, "Transformations of continuously self-focusing and continuously self-defocusing dissipative solitons," Opt. Express 16, 15388-15401 (2008)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-20-15388


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. (Eds.) N. Akhmediev and A. Ankiewicz, Dissipative solitons Lecture Notes in Physics, V. 661 (Springer, Heidelberg, 2005). [CrossRef]
  2. Dissipative Solitons: From optics to biology and medicine Lecture Notes in Physics, V 751, (Eds.) N. Akhmediev and A. Ankiewicz, (Springer, Berlin-Heidelberg, 2008).
  3. M. Tlidi, M. Taki, and T. Kolokolnikov, "Dissipative Localized Structures in Extended Systems," Chaos 17, 037101, 2007. [CrossRef] [PubMed]
  4. M. Tlidi, A. Vladimirov and P. Mandel, "Curvature instability in passive diffractive resonators," Phys. Rev. Lett. 98, 233901, (2002). [CrossRef]
  5. I. S. Aranson and L. Kramer, "The world of the complex Ginzburg-Landau equation," Rev. Mod. Phys. 74, 99 (2002). [CrossRef]
  6. O. Descalzi, G. During and E. Tirapegui, "On the stable hole solutions in the complex Ginzburg-Landau equation," Physica A 356, 66-71 (2005). [CrossRef]
  7. H. A. Haus, "Theory of mode locking with a slow saturable absorber," IEEE Journ. of Quantum Electron.,  QE-11 (9), 736 (1975). [CrossRef]
  8. W. H. Renninger, A. Chong, and F. W. Wise, "Dissipative solitons in normal-dispersion fiber lasers," Phys. Rev. A 77, 023814 (2008). [CrossRef]
  9. A. Komarov, H. Leblond, and F. Sanchez, "Quintic complex Ginzburg-Landau model for ring fiber lasers," Phys. Rev. E 72, 025604(R) (2005). [CrossRef]
  10. M. Taki, N. Ouarzazi, H. Ward and P. Glorieux, "Nonlinear front propagation in optical parametric oscillators," J. Opt. Soc. Am. B 17, 997 (2000). [CrossRef]
  11. N. N. Rosanov, Solitons in laser systems with saturable absorption, Dissipative solitons Lecture Notes in Physics, V. 661, (Eds.) N. Akhmediev and A. Ankiewicz, (Springer, Heidelberg, 2005).
  12. E. A. Ultanir and G. I. Stegeman, D. Michaelis, C. H. Lange, and F. Lederer, "Stable dissipative solitons in semiconductor optical amplifiers," Phys. Rev. Lett. 90, 253903 (2003). [CrossRef] [PubMed]
  13. C. Montes, A. Mikhailov, A. Picozzi, and F. Ginovart, "Dissipative three-wave structures in stimulated backscattering. I. A subluminous solitary attractor," Phys. Rev. E 55, 1086 (1997). [CrossRef]
  14. R. J. Deissler and H. R. Brand, "Periodic, quasiperiodic, and chaotic localized solutions of the quintic complex Ginzburg-Landau equation," Phys. Rev. Lett. 72, 478 - 481 (1994). [CrossRef] [PubMed]
  15. X. Hachair, F. Pedaci, E. Caboche, S. Barland, M. Giudici, J. R. Tredicce, F. Prati, G. Tissoni, R. Kheradmand, L. A. Lugiato, I. Protsenko, and M. Brambilla, "Cavity solitons in a driven VCSEL above threshold," J. of Sel. Topics on Quant.Electr. 12, 339-351 (2006). [CrossRef]
  16. A. Ankiewicz, N. Devine, N. Akhmediev and J. M. Soto-Crespo "Continuously self-focusing and continuously self-defocusing 2-D beams in dissipative media," Phys. Rev. A 77, 033840 (2008). [CrossRef]
  17. J. M. Soto-Crespo, N. Akhmediev y A. Ankiewicz. "Pulsating, creeping and erupting solitons in dissipative systems," Phys.Rev. Lett. 85, 2937 (2000). [CrossRef]
  18. Akhmediev. J. M. Soto-Crespo, and G. Town "Pulsating solitons, chaotic solitons, period doubling, and pulse coexistence in mode-locked lasers: Complex Ginzburg - Landau equation,"Phys. Rev. E. 63, 056602 (2001). [CrossRef]
  19. J. M. Soto-Crespo, Ph. Grelu, and N. Akhmediev"Optical bullets and "rockets" in nonlinear dissipative systems and their transformations and interactions," Opt. Express 14, 4013 (2006). [CrossRef] [PubMed]
  20. J. M. Soto-Crespo, N. Akhmediev and Ph. Grelu "Optical bullets and double bullet complexes in dissipative systems," Phys. Rev. E 74, 046612 (2006). [CrossRef]
  21. N. AkhmedievJ.M. Soto-Crespo and Ph. Grelu, "Vibrating and shaking soliton pairs in dissipative systems." Phys. Lett. A 364, 413 (2007). [CrossRef]
  22. E. Tsoy and N. Akhmediev, "Bifurcations from stationary to pulsating solitons in the cubic quintic complex Ginzburg Landau equation," Phys. Lett. A 343, 417-422 (2005). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material


» Media 1: MPG (568 KB)     
» Media 2: MPG (1242 KB)     
» Media 3: MPG (636 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited