OSA's Digital Library

Optics Express

Optics Express

  • Editor: Martijn de Sterke
  • Vol. 16, Iss. 20 — Sep. 29, 2008
  • pp: 15425–15430

In-fiber microchannel device filled with a carbon nanotube dispersion for passive mode-lock lasing

Amos Martinez, Kaiming Zhou, Ian Bennion, and Shinji Yamashita  »View Author Affiliations


Optics Express, Vol. 16, Issue 20, pp. 15425-15430 (2008)
http://dx.doi.org/10.1364/OE.16.015425


View Full Text Article

Acrobat PDF (220 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Fueled by their high third-order nonlinearity and nonlinear saturable absorption, carbon nanotubes (CNT) are expected to become an integral part of next-generation photonic devices such as all-optical switches and passive mode-locked lasers. However, in order to fulfill this expectation it is necessary to identify a suitable platform that allows the efficient use of the optical properties of CNT. In this paper, we propose and implement a novel device consisting of an optofluidic device filled with a dispersion of CNT. By fabricating a microchannel through the core of a conventional fiber and filling it with a homogeneous solution of CNTs on Dimethylformamide (DMF), a compact, all-fiber saturable absorber is realized. The fabrication of the micro-fluidic channel is a two-step process that involves femtosecond laser micro-fabrication and chemical etching of the laser-modified regions. All-fiber high-energy, passive mode-locked lasing is demonstrated with an output power of 13.5 dBm. The key characteristics of the device are compactness and robustness against optical, mechanical and thermal damage.

© 2008 Optical Society of America

OCIS Codes
(140.4050) Lasers and laser optics : Mode-locked lasers
(190.4400) Nonlinear optics : Nonlinear optics, materials

ToC Category:
Lasers and Laser Optics

History
Original Manuscript: August 13, 2008
Revised Manuscript: September 10, 2008
Manuscript Accepted: September 10, 2008
Published: September 15, 2008

Citation
Amos Martinez, Kaiming Zhou, Ian Bennion, and Shinji Yamashita, "In-fiber microchannel device filled with a carbon nanotube dispersion for passive mode-lock lasing," Opt. Express 16, 15425-15430 (2008)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-20-15425


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. H. Kataura, Y. Kumazawa, Y. Maniwa, I. Umezu, S. Suzuki, Y. Ohtsuka, and Y. Achiba "Optical properties of single-wall carbon nanotubes," Synth. Met. 103, 2555-2558 (1999) [CrossRef]
  2. Y.-C. Chen, N. R. Raravikar, L. S. Schadler, P. M. Ajayan, Y.-P. Zhao, T.-M. Lu, G.-C. Wang and X.-C. Zhang, "Ultrafast optical switching properties of single-wall carbon nanotube polymer composites at 1.55 ?m," Appl. Phys. Lett. 81, 975-977 (2002) [CrossRef]
  3. S. Y. Set, H. Yaguchi, Y. Tanaka and M. Jablonski, "Ultrafast Fiber Pulsed Lasers Incorporating Carbon Nanotubes," IEEE J. Sel. Top. Quantum Electron. 10, 137 (2004). [CrossRef]
  4. S. Yamashita, Y. Inoue, S. Maruyama, Y. Murakami, H. Yaguchi, M. Jablonski and S. Y. Set, "Saturable absorbers incorporating carbon nanotubes directly synthesized onto substrates and fibers and their application to mode-locked fiber lasers," Opt. Lett. 29, 1581-1583 (2004). [CrossRef]
  5. A. Martinez, S. Uchida, Y-W Song, T. Ishigure, and S. Yamashita, "Fabrication of Carbon Nanotube-Poly-methyl-methacrylate Composites for Nonlinear Photonic Devices," Opt. Express 16, 11337-11343 (2008). [CrossRef]
  6. Y-W Song, S. Yamashita, C. S. Goh, and S. Y. Set, "Carbon nanotube mode lockers with enhanced nonlinearity via evanescent field interaction in D-shaped fibers," Opt. Lett. 32, 148-150 (2007) [CrossRef]
  7. Y-W. Song, K. Morimune, S.Y. Set, and S. Yamashita, "Polarization insensitive all-fiber mode-lockers functioned by carbon nanotubes deposited onto tapered fibers," Appl. Phys. Lett. 90, 021101 (2007) [CrossRef]
  8. T. Oomuro, R. Kaji, T. Itatani, H. Ishii, E. Itoga, H. Kataura, M. Yamashita, M. Mori, and Y. Sakakibara, "Carbon Nanotube-Polyimide Saturable Absorbing Waveguide Made by Simple Photolithography," in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, OSA Technical Digest Series (CD) (Optical Society of America, 2007), paper CThV1.
  9. Y-W Song, S. Yamashita, and S. Maruyama, "Single-walled carbon nanotubes for high-energy optical pulse formation," Appl. Phys. Lett. 92, 021115 (2008) [CrossRef]
  10. D. Psaltis, S. R. Quake, and C. Yang, "Developing optofluidic technology through the fusion of microfluidics and optics," Nature 442, 381-386, (2006). [CrossRef]
  11. C. Monat, P. Domachuk, and B. J. Eggleton, "Integrated optofluidics: A new river of light," Nat. Photonics 1, 106-114 (2007). [CrossRef]
  12. Y. Lai, K. Zhou, L. Zhang, and I. Bennion, "Microchannels in conventional single-mode fibers," Opt. Lett. 31, 2559-2561 (2006) [CrossRef]
  13. Y. Kondo, J. Qiu, T. Mitsuyu, K. Hirao, and T. Yoko, "Three-dimensional microdrilling of glass by multiphoton process and chemical etching," Jpn J. Appl. Phys. 38, L1146-L1148 (1999). [CrossRef]
  14. A. Marcinkevicius, S. Juodkazis, M. Watanabe, M. Miwa, S. Matsuo, H. Misawa, J. Nishii, "Femtosecond laser-assisted three-dimensional microfabrication in silica," Opt. Lett. 26, 277-279 (2001). [CrossRef]
  15. RR Gattass and E. Mazur, "Femtosecond Laser micromachining in transparent materials," Nat. Photonics,  2, 219-225 (2008) [CrossRef]
  16. K. Zhou, Y. Lai, X. Chen, K. Sugden, L. Zhang, and I. Bennion, "A refractometer based on a micro-slot in a fiber Bragg grating formed by chemically assisted femtosecond laser processing," Opt. Express 15, 15848-15853 (2007) [CrossRef]
  17. R. Osellame, V. Maselli, R. Martinez Vazquez, R. Ramponi and G. Cerullo, "Integration of optical waveguides and microfluidic channels both fabricated by femtosecond laser irradiation," Appl. Phys. Lett. 90, 231118 (2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited