OSA's Digital Library

Optics Express

Optics Express

  • Editor: Martijn de Sterke
  • Vol. 16, Iss. 20 — Sep. 29, 2008
  • pp: 15439–15448

All-angle negative refraction and imaging in a bulk medium made of metallic nanowires in the visible region

Yongmin Liu, Guy Bartal, and Xiang Zhang  »View Author Affiliations


Optics Express, Vol. 16, Issue 20, pp. 15439-15448 (2008)
http://dx.doi.org/10.1364/OE.16.015439


View Full Text Article

Enhanced HTML    Acrobat PDF (645 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We theoretically demonstrated that all-angle negative refraction and imaging can be implemented by metallic nanowires embedded in a dielectric matrix. When the separation between the nanowires is much smaller than the incident wavelength, these structures can be characterized as indefinite media, whose effective permittivities perpendicular and parallel to the wires are opposite in signs. Under this condition, the dispersion diagram is hyperbolic for transverse magnetic waves propagating in the nanowire system, thereby exhibiting all-angle negative refraction. Such indefinite media can operate over a broad frequency range (visible to near-infrared) far from any resonances, thus they offer an effective way to manipulate light propagation in bulk media with low losses, allowing potential applications in photonic devices.

© 2008 Optical Society of America

OCIS Codes
(160.4760) Materials : Optical properties
(240.6680) Optics at surfaces : Surface plasmons
(160.3918) Materials : Metamaterials

ToC Category:
Metamaterials

History
Original Manuscript: May 8, 2008
Revised Manuscript: August 11, 2008
Manuscript Accepted: August 15, 2008
Published: September 16, 2008

Citation
Yongmin Liu, Guy Bartal, and Xiang Zhang, "All-angle negative refraction and imaging in a bulk medium made of metallic nanowires in the visible region," Opt. Express 16, 15439-15448 (2008)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-20-15439


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. V. G. Veselago, "The electromagnetics of substances with simultaneously negative ? and ?," Sov. Phys. Usp. 10, 509-514 (1968). [CrossRef]
  2. J. B. Pendry, "Negative refraction makes a perfect lens," Phys. Rev. Lett. 85, 3966-3969 (2000). [CrossRef] [PubMed]
  3. N. Fang, H. Lee, C. Sun, and X. Zhang, "Sub-diffraction-limited optical imaging with a silver superlens," Science 308, 534-537 (2005). [CrossRef] [PubMed]
  4. X. Zhang and Z. Liu, "Superlenses to overcome the diffraction limit," Nat. Mater. 7, 435, (2008) [CrossRef] [PubMed]
  5. R. A. Shelby, D. R. Smith, and S. Schultz, "Experimental verification of a negative index of refraction," Science 292, 77-79 (2001). [CrossRef] [PubMed]
  6. C. G. Parazzoli, R. B. Greegor, K. Li, B. E. C. Koltenbah, and M. Tanielian, "Experimental verification and simulation of negative index of refraction using Snell???s law," Phys. Rev. Lett. 90, 107401 (2003). [CrossRef] [PubMed]
  7. A. A. Houck, J. B. Brock, and I. L. Chuang, "Experimental observations of a left-handed material that obeys Snell???s law," Phys. Rev. Lett. 90, 137401 (2003). [CrossRef] [PubMed]
  8. M. Notomi, "Theory of light propagation in strongly modulated photonic crystals: Refractionlike behavior in the vicinity of the photonic band gap," Phys. Rev. B 62, 10696-10705 (2000).
  9. C. Luo, S. G. Johnson, J. D. Joannopoulos, and J. B. Pendry, "Negative refraction without negative index in metallic photonic crystals," Opt. Express 11, 745-754 (2003). [CrossRef]
  10. X. H. Hu and C. T. Chan, "Photonic crystals with silver nanowires as a near-infrared superlens," Appl. Phys. Lett. 85, 1520-1522 (2004). [CrossRef]
  11. E. Cubukcu, K. Aydin, E. Ozbay, S. Foteinopoulou, and C. M. Soukoulis, "Negative refraction by photonic crystals," Nature 423, 604-605 (2003). [CrossRef] [PubMed]
  12. P. V. Parimi, W. T. Lu, P. Vodo, and S. Sridhar, "Photonic crystals: Imaging by flat lens using negative refraction," Nature 426, 404 (2003). [CrossRef] [PubMed]
  13. S. Foteinopoulou and C. M. Soukoulis, "Negative refraction and left-handed behavior in two-dimensional photonic crystals," Phys. Rev. B 67, 235107 (2003).
  14. A. Berrier, M. Mulot, M. Swillo, M. Qiu, L. Thylen, A. Talneau, and S. Anand, "Negative refraction at infrared wavelengths in a two-dimensional photonic crystal," Phys. Rev. Lett. 93, 073902 (2004). [CrossRef] [PubMed]
  15. Schonbrun, Q. Wu, W. Park, T Yamashita, C. J. Summers, M. Abashin and Y. Fainman, "Wave front evolution of negatively refracted waves in a photonic crystal", Appl. Phys. Lett. 90, 041113 (2007). [CrossRef]
  16. C. M. Soukoulis, S. Linden and M. Wegener, "Negative refractive index at optical wavelengths," Science 315, 47-49 (2007). [CrossRef] [PubMed]
  17. M. I. Stockman, "Criterion for negative refraction with low optical losses from a fundamental principle of causality," Phys. Rev. Lett. 98, 177404 (2007). [CrossRef]
  18. G. Dolling, W. Wegener, C. M. Soukoulis and S. Linden, "Negative-index metamaterial at 780 nm wavelength," Opt. Lett. 32, 53-55 (2007). [CrossRef]
  19. N. Liu, H. C. Guo, L. W. Fu, S. Kaiser, H. Schweizer, and H. Giessen, "Three-dimensional photonic metamaterials at optical frequencies," Nat. Mater. 7, 31-37 (2008). [CrossRef]
  20. H. Shin and S. H. Fan, "All-angle negative refraction for surface plasmon waves using a metal-dielectric-metal structure," Phys. Rev. Lett. 96, 073907 (2006). [CrossRef] [PubMed]
  21. H. J. Lezec, J. A. Dionne, and H. A. Atwater, "Negative refraction at visible frequencies," Science 316, 430-432 (2007). [CrossRef] [PubMed]
  22. M. Scalora, G. D'Aguanno, N. Mattiucci, M. J. Bloemer, D. de Ceglia, M. Centini, A. Mandatori, C. Sibilia, N. Akozbek, M. G. Cappeddu, M. Fowler, and JosephW. Haus, "Negative refraction and sub-wavelength focusing in the visible range using transparent metallo-dielectric stacks," Opt. Express 15, 508-523 (2007). [CrossRef] [PubMed]
  23. X.B. Fan, G. P. Wang, J. C. W. Lee and C. T. Chan, "All-angle broadband negative refraction of metal waveguide arrays in the visible range: theoretical analysis and numerical demonstration," Phys. Rev. Lett. 97, 073901 (2007). [CrossRef]
  24. B. Wood, J. B. Pendry, and D. P. Tsai, "Directed subwavelength imaging using a layered metal-dielectric system," Phys. Rev. B 74, 115116 (2006).
  25. A. J. Hoffman, L. Alekseyev, S. S. Howard, K. J. Franz, D. Wasserman, V. A. Podolskiy, E. E. Narimanov, D. L. Sivco, and C. Gmachl " Negative refraction in semiconductor metamaterials," Nat. Mater. 6, 946-950 (2007). [CrossRef] [PubMed]
  26. A. Salandrino and N. Engheta, "Far-field subdiffraction optical microscopy using metamaterial crystals: theory and simulations," Phys. Rev. B 74, 075103 (2006).
  27. Z. Jacob, L. V. Alekseyev, and E. Narimanov, "Optical Hyperlens: Far-field imaging beyond the diffraction limit," Opt. Express 14, 8247-8256 (2006). [CrossRef] [PubMed]
  28. Zhaowei Liu, Hyesog Lee, Yi Xiong, Cheng Sun, and Xiang Zhang, "Far-field optical hyperlens magnifying sub-diffraction-limited objects," Science 315, 1686 (2007). [CrossRef] [PubMed]
  29. I. I. Smolyaninov, Y. J. Hung, and C. C. Davis, "Magnifying Superlens in the Visible Frequency Range," Science 315, 1699-1701 (2007). [CrossRef] [PubMed]
  30. D. R. Smith and D. Schurig, "Electromagnetic wave propagation in media with indefinite permittivity and permeability tensors," Phys. Rev. Lett. 90, 077405 (2003). [CrossRef] [PubMed]
  31. H. Masuda and K. Fukuda, "Ordered metal nanohole arrays made by a two-step replication of honeycomb structures of anodic alumina," Science 268, 1466-1468 (1995). [CrossRef] [PubMed]
  32. C. R. Martin, "Nanomaterials: a membrane-based synthetic approach," Science 266, 1961-1966 (1994). [CrossRef] [PubMed]
  33. J. Elser, V. A. Podolskiy, I. Salakhutdinov, and E. E. Narimanov, "Nanowire metamaterials with extreme optical anisotropy," Appl. Phys. Lett. 89, 261102 (2006). [CrossRef]
  34. A. Sihvola, Electromagnetic Mixing Formulas and Applications, (Institution of Electrical Engineers, 1999).
  35. C. A. Foss, G. L. Hornyak, J. A. Stockert, and C. R. Martin, "Template synthesized nanoscopic gold particles: optical spectra and the effects of particle size and shape," J. Phys. Chem. 98, 2963-2971 (1994). [CrossRef]
  36. P. B. Johnson and R. W. Christy, "Optical constants of the noble metals," Phys. Rev. B 6, 4370-4379 (1972).
  37. H. Raether, Surface Plasmons: On Smooth and Rough Surfaces and on Gratings, (Springer, Berlin, 1988).
  38. This is valid for kx <?? /d, where d is the average distance between wires. The cutoff is at kx <?? /d >>2??/?0.
  39. P. A. Belov, "Backward waves and negative refraction in uniaxial dielectrics with negative dielectric permittivity along the anisotropy axis," Microwave Opt. Technol. Lett. 37, 259-263 (2003). [CrossRef]
  40. V. A. Podolskiy and E. E. Narimanov, "Strongly anisotropic waveguide as a nonmagnetic left-handed system," Phys. Rev. B 71201101(R) (2005).
  41. T. Dumelow, J. A. P. da Costa, and V. N. Freire, "Slab lenses from simple anisotropic media," Phys. Rev. B 72, 235115 (2005).
  42. G. Shvets, S. Trendafilov, J. B. Pendry, and A. Sarychev, "Guiding, focusing, and sensing on the subwavelength scale using metallic wire arrays," Phys. Rev. Lett. 99, 053909 (2007). [CrossRef]
  43. P. Ikonen, C. Simovski, S. Tretyakov, P. Belov, and Y. Hao, "Magnification of subwavelength field distributions at microwave frequencies using a wire medium slab operating in the canalization regime," Appl. Phys. Lett. 91, 104102 (2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited