OSA's Digital Library

Optics Express

Optics Express

  • Editor: Martijn de Sterke
  • Vol. 16, Iss. 20 — Sep. 29, 2008
  • pp: 15455–15462

Transmission and reflection of electromagnetically induced absorption grating in homogeneous atomic media

Shang-qi Kuang, Ren-gang Wan, Peng Du, Yun Jiang, and Jin-yue Gao  »View Author Affiliations


Optics Express, Vol. 16, Issue 20, pp. 15455-15462 (2008)
http://dx.doi.org/10.1364/OE.16.015455


View Full Text Article

Enhanced HTML    Acrobat PDF (190 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We theoretically study the transmission and reflection of the probe travelling wave in an electromagnetically induced absorption grating (EIG), which is created in a three-level Λ-type atomic system when the coupling field is a standing wave. Using the system, we show that a photonic stop band can exist on one side away from the resonance point in ultracold atomic gas, while there is an enhanced absorption at resonance and small reflection around it in the thermal atomic gas. Because our method can deal with such two cases, it is helpful to further understand the effects of the Doppler effect on atomic coherence and interference.

© 2008 Optical Society of America

OCIS Codes
(020.1670) Atomic and molecular physics : Coherent optical effects
(050.2770) Diffraction and gratings : Gratings
(270.1670) Quantum optics : Coherent optical effects

ToC Category:
Quantum Optics

History
Original Manuscript: July 7, 2008
Revised Manuscript: September 7, 2008
Manuscript Accepted: September 7, 2008
Published: September 16, 2008

Citation
Shang-qi Kuang, Ren-gang Wan, Peng Du, Yun Jiang, and Jin-yue Gao, "Transmission and reflection of electromagnetically induced absorption grating in homogeneous atomic media," Opt. Express 16, 15455-15462 (2008)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-20-15455


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. H. Y. Ling, Y. Q. Li, and M. Xiao, "Electromagnetically induced grating: Homogeneously broadened medium," Phys. Rev. A 57, 1338-1344 (1998). [CrossRef]
  2. M. Mitsunaga and N. Imoto, "Observation of an electromagnetically induced grating in cold sodium atoms," Phys. Rev. A 59, 4773-4776 (1999). [CrossRef]
  3. M. Artoni and G. C. La Rocca, "Optically tunable photonic stop bands in homogeneous absorbing media," Phys. Rev. Lett. 96, 073905 (2006). [CrossRef] [PubMed]
  4. A. W. Brown and M. Xiao, "All-optical switching and routing based on an electromagnetically induced absorption grating," Opt. Lett. 30, 699-701 (2005). [CrossRef] [PubMed]
  5. A.W. Brown and M. Xiao, "Frequency detuning and power depedence of reflection from an electromagnetically induced absorption grating," J. Mod. Opt. 52, 2365-2371 (2003). [CrossRef]
  6. M. Bajcsy, A. S. Zibrov, and M. D. Lukin, "Stationary pulses of light in an atomic medium," Nature 426, 638-641 (2003). [CrossRef] [PubMed]
  7. M. Fleischhauer and M. D. Lukin, "Dark-State polaritons in Electromagnetically induced transparency," Phys. Rev. Lett. 84, 5094-5097 (2000). [CrossRef] [PubMed]
  8. M. Fleischhauer and M. D. Lukin, "Quantum memory for photons: Dark-state polaritons," Phys. Rev. A 65, 022314 (2002). [CrossRef]
  9. F. E. Zimmer, A. Andre, M. D. Lukin, and M. Fleischhauer, "Coherent control of stationary light pulses," Opt. Commun. 264, 441-453 (2006). [CrossRef]
  10. K. R. Hansen and K. Mølmer, "Trapping of light pulses in ensembles of stationary ??? atoms," Phys. Rev. A 75, 053802 (2007). [CrossRef]
  11. K. R. Hansen and K. Mølmer, "Stationary light pulses in ultra cold gases," Phys. Rev. A 75, 065804 (2007). [CrossRef]
  12. A. Andre and M. D. Lukin, "Manipulating light pulses via dynamically controlled photonic band gap," Phys. Rev. Lett. 89, 143602 (2002). [CrossRef] [PubMed]
  13. X. M. Su and B. S. Ham, "Dynamic control of the photonic band gap using quantum coherence," Phys. Rev. A 71, 013821 (2005). [CrossRef]
  14. F. Silva, J. Mompart, V. Ahufinger, and R. Corbalan, "Electromagnetically induced transparency in Dopplerbroadened three-level systems with resonant standing-wave drive," Europhys. Lett. 51, 286-292 (2000). [CrossRef]
  15. F. Silva, J. Mompart, V. Ahufinger, and R. Corbalan, "Electromagnetically induced transparency with a standingwave drive in the frequency up-conversion regime," Phys. Rev. A 64, 033802 (2001). [CrossRef]
  16. S. A. Babin, D. V. Churkin, E. V. Podivilov, V. V. Potapov, and D. A. Shapiro, "Splitting of the peak of electromagnetically induced transparency by the higher-order spatial harmonics of the atomic coherence," Phys. Rev. A 67, 043808 (2003). [CrossRef]
  17. E. Kyrola and R. Salomaa, "Probe spectroscopy in an inhomogeneously broadened three-level system saturated by an intense standing wave," Phys. Rev. A 23, 1874-1892 (1981). [CrossRef]
  18. B. J. Feldman and M. S. Feld, "Laser-induced line-narrowing effects in coupled Doppler-broadened transitions. II. Standing-wave features," Phys. Rev. A 5, 899-918 (1972). [CrossRef]
  19. M. Artoni, G. C. La Rocca, and F. Bassani, "Resonantly absorbing one-dimensional photonic crystals," Phys. Rev. E 72, 046604 (2005). [CrossRef]
  20. J. D. Jackson, Classical Electrodynamics, 2nd ed (Wiley, New York, 1975), pp. 306-312.
  21. S. Harris, "Electromagnetically induced transparency," Phys. Today 50, 36-42 (1997). [CrossRef]
  22. J. Wang, Y. F. Zhu, K. J. Jiang, and M. S. Zhan, "Bichromatic electromagnitically induced transparency in cold rubidium atoms," Phys. Rev. A 68, 063810 (2003). [CrossRef]
  23. Y. F. Zhu, Q. L. Wu, A. Lezama, D. J. Gauthier, and T. W. Mossberg, "Resonance fluorescence of two-level atoms under strong bichromatic excitation," Phys. Rev. A 41, 6574-6576 (1990). [CrossRef] [PubMed]
  24. Z. Ficek and H. S. Freedhoff, "Resonance-fluorescence and absorption spectra of two-level atom driven by a strong bichromatic field," Phys. Rev. A 48, 3092-3104 (1993). [CrossRef] [PubMed]
  25. P. R. S. Carvalho, L. E. E. de Araujo and J. W. R. Tabosa, "Angular dependence of an electromagnetically induced transparency resonance in a Doppler-broadened atomic vapor," Phys. Rev. A 70, 063818 (2004). [CrossRef]
  26. M. Born and E. Wolf, Principles of Optics, 7th ed (Cambridge University Press, Cambridge, UK, 1999), pp. 64-74.
  27. H. Wang, D. Goorskey, and M. Xiao, "Enhanced Kerr nonlinearity via atomic coherence in a three-level atomic system," Phys. Rev. Lett. 87, 073601 (2001). [CrossRef] [PubMed]
  28. H. Wang, D. Goorskey, and M. Xiao, "Atomic coherence induced Kerr nonlinearity enhancement in Rb vapour," J. Mod. Opt. 49, 335-347 (2002). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2. Fig. 3.
 
Fig. 4.
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited