OSA's Digital Library

Optics Express

Optics Express

  • Editor: Martijn de Sterke
  • Vol. 16, Iss. 20 — Sep. 29, 2008
  • pp: 15506–15513

Strong influence of nonlinearity and surface plasmon excitations on the lateral shift

Kihong Kim, D. K. Phung, F. Rotermund, and H. Lim  »View Author Affiliations

Optics Express, Vol. 16, Issue 20, pp. 15506-15513 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (303 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



When surface plasmons are excited at a metal-dielectric interface, the electromagnetic field takes a very large value near the interface. If the dielectric is a nonlinear Kerr medium, then the effect of nonlinearity can be greatly amplified due to the field enhancement. In this paper, we calculate the lateral shift of p wave beams incident on metal-dielectric multilayer systems in the Otto configuration in a numerically exact manner, using the invariant imbedding method of wave propagation in nonlinear stratified media. In the linear case, we find that the lateral shift becomes very large at the incident angles where the surface plasmons are excited. As the nonlinearity is turned on, the value of the lateral shift changes rapidly. We find that even a small change of the intensity of the incident wave can cause a huge change of the lateral shift. We propose that this phenomenon can be applied to designing precise optical switches operating at small powers.

© 2008 Optical Society of America

OCIS Codes
(190.1450) Nonlinear optics : Bistability
(190.5940) Nonlinear optics : Self-action effects

ToC Category:
Nonlinear Optics

Original Manuscript: July 9, 2008
Revised Manuscript: September 12, 2008
Manuscript Accepted: September 12, 2008
Published: September 17, 2008

Kihong Kim, D. K. Phung, F. Rotermund, and H. Lim, "Strong influence of nonlinearity and surface plasmon excitations on the lateral shift," Opt. Express 16, 15506-15513 (2008)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer-Verlag, 1988).
  2. W. L. Barnes, A. Dereux, and T. W. Ebbesen, "Surface plasmon subwavelength optics," Nature 424, 824-830 (2003). [CrossRef] [PubMed]
  3. E. Ozbay, "Plasmonics: Merging photonics and electronics at nanoscale dimensions," Science 311, 189-193 (2006). [CrossRef] [PubMed]
  4. A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, "Nano-optics of surface plasmon polaritons," Phys. Rep. 408, 131-314 (2005). [CrossRef]
  5. S. A. Maier and H. A. Atwater, "Plasmonics: Localization and guiding of electromagnetic energy in metal/dielectric structures," J. Appl. Phys. 98, 011101 (2005). [CrossRef]
  6. K. A. Willets and R. P. Van Duyne, "Localized surface plasmon resonance spectroscopy and sensing," Annu. Rev. Phys. Chem. 58, 267-297 (2007). [CrossRef]
  7. X. D. Hoa, A. G. Kirk, and M. Tabrizian, "Towards integrated and sensitive surface plasmon resonance biosensors: A review of recent progress," Biosens. Bioelectron. 23, 151-160 (2007). [CrossRef] [PubMed]
  8. J. R. Sambles and R. A. Innes, "A comment on nonlinear optics using surface plasmon-polaritons," J. Mod. Opt. 35, 791-797 (1988). [CrossRef]
  9. I. I. Smolyaninov, A. V. Zayats, A. Gungor, and C. C. Davis, "Single-photon tunneling via localized surface plasmons," Phys. Rev. Lett. 88, 187402 (2002). [CrossRef] [PubMed]
  10. N.-C. Panoiu and R. M. Osgood, Jr., "Subwavelength nonlinear plasmonic nanowire," Nano Lett. 4, 2427-2430 (2004). [CrossRef]
  11. G. A. Wurtz, R. Pollard, and A. V. Zayats, "Optical bistability in nonlinear surface-plasmon polaritonic crystals," Phys. Rev. Lett. 97, 057402 (2006). [CrossRef] [PubMed]
  12. Y. Liu, G. Bartal, D. A. Genov, and X. Zhang, "Subwavelength discrete solitons in nonlinear metamaterials," Phys. Rev. Lett. 99, 153901 (2007). [PubMed]
  13. X. Yin and L. Hesselink, "Goos-Hänchen shift surface plasmon resonance sensor," Appl. Phys. Lett. 89, 261108 (2006). [CrossRef]
  14. L. Chen, Z. Cao, F. Ou, H. Li, Q. Shen, and H. Qiao, "Observation of large positive and negative lateral shifts of a reflected beam from symmetrical metal-cladding waveguides," Opt. Lett. 32, 1432-1434 (2007). [CrossRef] [PubMed]
  15. G. I. Babkin and V. I. Klyatskin, "Theory of wave propagation in nonlinear inhomogeneous media," Sov. Phys. JETP 52, 416-420 (1980).
  16. B. Doucot and R. Rammal, "Invariant-imbedding approach to localization. II. Non-linear random media," J. Phys. (Paris) 48, 527-546 (1987). [CrossRef]
  17. K. Kim, D. K. Phung, F. Rotermund, and H. Lim, "Propagation of electromagnetic waves in stratified media with nonlinearity in both dielectric and magnetic responses," Opt. Express 16, 1150-1164 (2008). [CrossRef] [PubMed]
  18. R. Bellman and G. M. Wing, An Introduction to Invariant Imbedding (Wiley, 1976).
  19. V. I. Klyatskin, "The imbedding method in statistical boundary-value wave problems," Prog. Opt. 33, 1-127 (1994). [CrossRef]
  20. R. Rammal and B. Doucot, "Invariant-imbedding approach to localization. I. General framework and basic equations," J. Phys. (Paris) 48, 509-526 (1987). [CrossRef]
  21. K. Kim, "Reflection coefficient and localization length of waves in one-dimensional random media," Phys. Rev. B 58, 6153-6160 (1998). [CrossRef]
  22. K. Kim, D.-H. Lee, and H. Lim, "Theory of the propagation of coupled waves in arbitrarily inhomogeneous stratified media," Europhys. Lett. 69, 207-213 (2005). [CrossRef]
  23. K. Kim and D.-H. Lee, "Invariant imbedding theory of mode conversion in inhomogeneous plasmas. I. Exact calculation of the mode conversion coefficient in cold, unmagnetized plasmas," Phys. Plasmas 12, 062101 (2005). [CrossRef]
  24. K. Kim and D.-H. Lee, "Invariant imbedding theory of mode conversion in inhomogeneous plasmas. II. Mode conversion in cold, magnetized plasmas with perpendicular inhomogeneity," Phys. Plasmas 13, 042103 (2006). [CrossRef]
  25. K. Kim, F. Rotermund, and H. Lim, "Disorder-enhanced transmission of a quantum mechanical particle through a disordered tunneling barrier in one dimension: Exact calculation based on the invariant imbedding method," Phys. Rev. B 77, 024203 (2008). [CrossRef]
  26. R. W. Boyd, Nonlinear Optics, 2nd ed. (Academic Press, 2003).
  27. A. S. L. Gomes, E. L. F. Filho, C. B. de Araújo, D. Rativa, R. E. de Araujo, K. Sakaguchi, F. P. Mezzapesa, I. C. S. Carvalho, and P. G. Kazansky, "Third-order nonlinear optical properties of bismuth-borate glasses measured by conventional and thermally managed eclipse Z scan," J. Appl. Phys. 101, 033115 (2007). [CrossRef]
  28. T. E. O. Screen, K. B. Lawton, G. S. Wilson, N. Dolney, R. Ispasoiu, T. GoodsonIII, S. J. Martin, D. D. C. Bradley, and H. L. Anderson, "Synthesis and third order nonlinear optics of a new soluble conjugated porphyrin polymer," J. Mater. Chem. 11, 312-320 (2001). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited