OSA's Digital Library

Optics Express

Optics Express

  • Editor: Martijn de Sterke
  • Vol. 16, Iss. 20 — Sep. 29, 2008
  • pp: 15514–15530

Investigation of diffuse correlation spectroscopy in multi-layered media including the human head

Louis Gagnon, Michėle Desjardins, Julien Jehanne-Lacasse, Louis Bherer, and Frédéric Lesage  »View Author Affiliations

Optics Express, Vol. 16, Issue 20, pp. 15514-15530 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (312 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



In this work, diffuse correlation spectroscopy (DCS) is explored in multi-layered geometries. A quantitative comparison of an homogeneous versus a two-layered model efficiencies to recover flow changes is presented. By simulating a realistic human head with MRI anatomical data, we show that the two-layered model allows distinction between changes in superficial layers and brain. We also show that the two-layered model provides a better estimate of the flow change than the homogeneous one. Experimental measurements with a two-layered dynamical phantom confirm the ability of the two-layered analytical model to distinguish flow increase in each layer.

© 2008 Optical Society of America

OCIS Codes
(170.3660) Medical optics and biotechnology : Light propagation in tissues
(170.3880) Medical optics and biotechnology : Medical and biological imaging
(170.6480) Medical optics and biotechnology : Spectroscopy, speckle

ToC Category:
Medical Optics and Biotechnology

Original Manuscript: July 15, 2008
Revised Manuscript: September 10, 2008
Manuscript Accepted: September 12, 2008
Published: September 17, 2008

Virtual Issues
Vol. 3, Iss. 11 Virtual Journal for Biomedical Optics

Louis Gagnon, Michèle Desjardins, Julien Jehanne-Lacasse, Louis Bherer, and Frédéric Lesage, "Investigation of diffuse correlation spectroscopy in multi-layered media including the human head," Opt. Express 16, 15514-15530 (2008)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. S. Patterson, B. Chance, and C. Wilson, "Time resolved reflectance and transmittance for the noninvasive measurement of tissue optical properties," Appl. Opt. 28, 2331-2336 (1989). [CrossRef] [PubMed]
  2. B. J. Tromberg, L. O. Svaasand, T. Tsay, and R. C. Haskell, "Properties of photon density waves in multiplesscattering media," Appl. Opt. 32, 607-616 (1993). [CrossRef] [PubMed]
  3. D. Boas, M. A. O'Leary, B. Chance, and A. G. Yodh, "Scattering and wavelength transduction of diffuse photon density waves," Phys. Rev. E 47 (1993). [CrossRef]
  4. D. Boas, M. A. O'Leary, B. Chance, and A. G. Yodh, "Scattering of diffuse photon density waves by spherical inhomogeneities within turbid media: Analytic solution and applications," Proc. Natl. Acad. Sci. USA 91, 4887-4891 (1994). [CrossRef] [PubMed]
  5. D. A. Boas, "Diffuse photon probes of structural and dynamical properties of turbid media : theory and biomedical applications," Ph.D. thesis, University of Pennsylvania (1996).
  6. A. Yodh and B. Chance, "Spectroscopy and Imaging with Diffusing Light," Phys. Today 48, 34-40 (1995). [CrossRef]
  7. A. Villringer, C. Hock, L. Schleinkofer, and U. Dirnagl, "Near Infrared Spectroscopy (NIRS): A New Tool to Study Hemodynamic Changes During Activation of Brain Function in Human Adults," Neurosci. Lett. 154, 101-104 (1993). [CrossRef] [PubMed]
  8. Y. Hoshi and M. Tamura, "Multichannel near-infrared optical imaging of human brain activity," J. Appl. Physiol. 75, 1842-1846 (1993). [PubMed]
  9. H. Obrig and A. Villringer, "Beyond the visible - imaging the human brain with light," J. Cereb. Blood Flow Metab. 23, 1-18 (2002). [PubMed]
  10. M. Franceschini and D. Boas, "Noninvasive measurement of neuronal activity with near-infrared optical imaging," NeuroImage 21, 372-386 (2004). [CrossRef] [PubMed]
  11. A. Gibson, J. Hebden, and S. Arridge, "Recent advances in diffuse optical imaging," Phys. Med. Biol. 50, R1- R43 (2005). [CrossRef] [PubMed]
  12. D. Boas, L. E. Campbell, and A. G. Yodh, "Scattering and Imaging with Diffusing Temporal Field Correlations," Phys. Rev. Lett. 75 (1995). [CrossRef] [PubMed]
  13. D. Boas and A. G. Yodh, "Spatially varying dynamical properties of turbid media probed with diffusing temporal light correlation," J. Opt. Soc. Am. A 14 (1997).
  14. C. Cheung, J. P. Culver, K. Takahashi, J. H. Greenberg, and A. G. Yodh, "In vivo cerebrovascular measurement combining diffuse near-infrared absorption and correlation spectroscopies," Phys. Med. Biol. 46, 2053-2065 (2001). [CrossRef] [PubMed]
  15. J. P. Culver, T. Durduran, D. Furuya, C. Cheung, J. H. Greenberg, and A. G. Yodh, "Diffuse optical tomography of cerebral blood flow, oxygenation, and metabolism in rat during focal ischemia," J. Cereb. Blood Flow Metab. 23, 911-924 (2003). [CrossRef] [PubMed]
  16. T. Durduran, G. Yu, M. G. Burnett, J. A. Detre, J. H. Greenberg, J. Wang, C. Zhou, and A. G. Yodh, "Diffuse optical measurement of blood flow, blood oxygenation, and metabolism in a human brain during sensorimotor cortex activation," Opt. Lett. 29, 1766-1768 (2004). [CrossRef] [PubMed]
  17. J. Li, G. Dietsche, D. Iftime, S. E. Skipetrov, G. Maret, T. Elbert, B. Rockstroh, and T. Gisler, "Noninvasive detection of functionnal brain activity with near-infrared diffusing-wave spectroscopy," J. Biomed. Opt. 10, 044,002 (2005). [CrossRef] [PubMed]
  18. C. Zhou, G. Q. Yu, D. Furuya, J. H. Greenberg, A. G. Yodh, and T. Durduran, "Diffuse optical correlation tomography of cerebral blood flow during cortical spreading depression in rat brain," Opt. Express 14, 1125-1144 (2006). [CrossRef] [PubMed]
  19. G. Yu, T. Durduran, H. W. Wang, C. Zhou, E. M. Putt, H. M. Saunders, C. M. Sehgal, E. Glatstein, A. G. Yodh, and T. M. Bush, "Noninvasive Monitoring of Murine Tumor Blood Flow During and After Photodynamic Therapy Provides Early Assessment of Therapeutic Efficacy," Clin. Cancer Res. 11, 3543-3552 (2005). [CrossRef] [PubMed]
  20. G. Yu, T. Durduran, C. Zhou, T. C. Zhu, J. C. Finlay, T. M. Busch, S. B. Malkowicz, S. M. Hahn, and A. G. Yodh, "Real-time In Situ Monitoring of Human Prostate Photodynamic Therapy with Diffuse Light," Photochem. Photobiol. 82, 1279-1284 (2006). [CrossRef] [PubMed]
  21. T. Durduran, R. Choe, G. Yu, C. Zhou, J. C. Tchou, B. J. Czerniecki, and A. G. Yodh, "Diffuse optical measurement of blood flow in breast tumors," Opt. Lett. 30, 2915-2917 (2005). [CrossRef] [PubMed]
  22. U. Sunar, H. Quon, T. Durduran, J. Zhang, J. Du, C. Zhou, G. Yu, R. Choe, A. Kilger, R. Lustig, L. Loevner, S. Nioka, B. Chance, and A. G. Yodh, "Non-invasive diffuse optical measurement of blood flow and blood oxygenation for monitoring radiation therapy in patients with head and neck tumors," J. Biomed. Opt. 11, 064,021 (2006). [CrossRef]
  23. G. Yu, T. Durduran, G. Lech, C. Zhou, B. Chance, E. R. Mohler, and A. G. Yodh, "Time-dependant Blood Flow and Oxygenation in Human Skeletal Muscle Measured with Noninvasive Near-infrared Diffuse Optical Spectroscopies," J. Biomed. Opt. 10, 024,027 (2005). [CrossRef] [PubMed]
  24. G. Yu, T. F. Floyd, T. Durduran, C. Zhou, J. Wang, J. A. Detre, and A. G. Yodh, "Validation of diffuse correlation spectroscopy for muscle blood flow with concurrent arterial spin labeled perfusion MRI," Opt. Express 15 (2007). [CrossRef] [PubMed]
  25. B. J. Ackerson, R. L. Dougherty, N. M. Reguigui, and U. Nobbman, "Correlation transfer: application of radiative transfer solution methods to photon correlation problems," J. Thermophys. Heat Transfer 6, 577-588 (1992). [CrossRef]
  26. R. L. Dougherty, B. J. Ackerson, N. M. Reguigui, F. Dorri-Nowkoorani, and U. Nobbman, "Correlation transfer: development and application," J. Quant. Spectrosc. Radiat. Transfer 52, 713-727 (1994). [CrossRef]
  27. S. Chandrasekhar, Radiative Transfer (Dover, New York, 1960).
  28. A. Ishimaru, Wave propagation and Scattering in Random Media, vol. 1 (New York : Academic, 1978).
  29. S. R. Arridge, "Optical tomography in medical imaging," Inverse Problem 15, R41-R93 (1999). [CrossRef]
  30. T. Durduran, "Non-Invasive Measurements of Tissue Hemodynamics with Hybrid Diffuse Optical Methods," Ph.D. thesis, University of Pennsylvania (2004).
  31. L. Gagnon, C. Gauthier, J. Selb, D. A. Boas, R. D. Hoge, and F. Lesage, "Double layer estimation of intra- and extra-cerebral hemoglobin concentration with a time-resolved system," J. Biomed. Opt. 13 (2008). [CrossRef] [PubMed]
  32. L. Gagnon, J. Selb, D. A. Boas, R. D. Hoge, and F. Lesage, "Measurements of Hemoglobin Concentrations in the Human Forehead Using Time-Resolved Reflectance," in Biomedical Optics, vol. 1 of OSA Technical Digest (CD) (Optical Society of America, 2008). Paper BSuE73.
  33. F. Lesage, L. Gagnon, and M. Dehaes, "Diffuse Optical-MRI fusion and applications," Proc. SPIE 6850, C1-C11 (2008).
  34. F. Martelli, A. Sassaroli, S. Del-Bianco, Y. Yamada, and G. Zaccanti, "Solution of the time-dependent diffusion equation for layered diffusive media by the eigenfucntion method." Phys. Rev. E 67, 056,623 (2003). [CrossRef]
  35. A. Kienle, M. S. Patterson, N. Dognitz, R. Bays, G. Wagnieres, and H. van den Bergh, "Noinvasive determination of the optical properties of two-layered turbid media," Appl. Opt. 37, 779-791 (1998). [CrossRef]
  36. A. Kienle, T. Glanzmann, G. Wagnieres, and H. van den Bergh, "Investigation of two-layered turbid media with time-resolved reflectance," Appl. Opt. 37, 6852-6862 (1998). [CrossRef]
  37. A. Kienle and T. Glanzmann, "In vivo determination of the optical properties of muscle with time-resolved reflectance using a layered model," Phys. Med. Biol. 44, 2689-2702 (1999). [CrossRef] [PubMed]
  38. F. Martelli, S. D. Bianco, G. Zaccanti, A. Pifferi, A. Torricelli, A. Bassi, P. Taroni, and R. Cubeddu, "Phantom validation and in vivo application of an inversion procedure for retrieving the optical properties of diffusive layered media from time-resolved reflectance measurements." Opt. Lett. 29 (2004). [CrossRef] [PubMed]
  39. Choi, M. Wolf, V. Toronov, U. Wolf, C. Polzonetti, D. Hueber, L. P. Safonova, R. Gupta, A. Michalos, W. Mantulin, and E. Gratton, "Noninvasive determination of the optical properties of adult brain: near-infrared spectroscopy approach," J. Biomed. Opt. 9, 221-229 (2004). [CrossRef] [PubMed]
  40. C. Zhou, "In vivo optical imaging and spectroscopy of cerebral hemodynamics," Ph.D. thesis, University of Pennsylvania (2007).
  41. R. C. Haskell, L. O. Svaasand, T. T. Tsay, T. C. Feng, M. McAdams, and B. J. Tromberg, "Boundary conditions for the diffusion equation in radiative transfer," J. Opt. Soc. Am. A 11, 2727-2741 (1994). [CrossRef]
  42. G. H. Golub and J. H. Welsch, "Calculation of Gauss quadrature rules," Math. Comput. 23, 221-230 (1969). [CrossRef]
  43. L. G. Henyey and J. Greenstein, "Diffuse radiation in the galaxy," Astrophys. J. 93, 70-83 (1941). [CrossRef]
  44. A. A. Middleton and D. S. Fisher, "Discrete scatterers and autocorrelations of multiply scattered light," Phys. Rev. B 43, 5934-5938 (1991). [CrossRef]
  45. D. J. Durian, "Accuracy of diffusing-wave spectroscopy theories," Phys. Rev. E 51, 3350-3358 (1995). [CrossRef]
  46. M. H. Koelink, F. F. M. de Mul, J. Greve, R. Graaff, A. C. M. Dassel, and J. G. Aarnoudse, "Laser Doppler blood flowmetry using two wavelengths: Monte Carlo simulations and measurements," Appl. Opt. 33, 3549-3558 (1994). [CrossRef] [PubMed]
  47. R. Graaff, M. H. Koelink, F. F. M. de Mul, W. G. Zijlstra, A. C. M. Dassel, and J. G. Aarnoudse, "Condensed Monte Carlo simulations for the description of light transport," Appl. Opt. 32, 426-434 (1993). [CrossRef] [PubMed]
  48. S. L. Jacques and L. Wang, "Monte Carlo modeling of light transport in tissues," in Optical-Thermal Response of Laser-Irradiated Tissue, pp. 73-100 (Plenum, New York, 1995).
  49. L. Wang, S. L. Jacques, and L. Zheng, "MCML-Monte Carlo modeling of light transport in multi-layered tissues," Comput. Methods Prog. Biomed. 47, 131-146 (1995). [CrossRef]
  50. D. Boas, J. Culver, J. Stott, and A. Dunn, "Three dimensional Monte Carlo code for photon migration through complex heterogenous media including the adult human head," Opt. Express 10 (2002). [PubMed]
  51. L. Wang and H. I. Wu, Biomedical Optics: Principles and Imaging (John Wiley & Sons, Hoboken, 2007).
  52. S. O. Rice, "Mathematical analysis of random noise," in Noise and Stochastic Processes, p. 133 (Dover, New York, 1954).
  53. G. Maret and P. E. Wolf, "Multiple light scattering from disordered media. The effect of Brownian motion of scatterers," Z Phys. B 65, 409-413 (1987). [CrossRef]
  54. D. J. Pine, D. A. Weitz, P. M. Chaikin, and E. Herboltzheimer, "Diffusing-wave spectroscopy," Phys. Rev. Lett. 60, 1134-1137 (1988). [CrossRef] [PubMed]
  55. P. N. Pusey, J. M. Vaughan, and D. V. Willet, "Effect of spatial incoherence of the laser in photon-counting spectroscopy," J. Opt. Soc. Am. 73, 1012-1017 (1983). [CrossRef]
  56. T. Bellini, M. A. Glaser, N. A. Clark, and V. Degiorgio, "Effects of finite laser coherence in quasielastic multiple scattering," Phys. Rev. A 44, 5215-5223 (1991). [CrossRef] [PubMed]
  57. G. Strangman, M. A. Franceschini, and D. A. Boas, "Factors affecting the accuracy of near-infrared spectroscopy concentration calculations for focal changes in oxygenation parameters," NeuroImage 18, 865-879 (2003). [CrossRef] [PubMed]
  58. T. Huppert, R. Hoge, A. M. Dale, M. Franceschini, and D. Boas, "Quantitative spatial comparison of diffuse optical imaging with blood oxygen level-dependent and arterial spin labeling-based functional magnetic resonance imaging," J. Biomed. Opt. 11 (2006). [CrossRef] [PubMed]
  59. A. Kak and M. Slaney, Principles of Computerized Tomographic Imaging (IEEE Press, New York, 1988).
  60. B. W. Pogue, T. O. McBride, J. Prewitt, U. L. Osterberg, and K. D. Paulsen, "Spatially variant regularization improves diffuse optical tomography," Appl. Opt. 38, 2950-2961 (1999). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited