OSA's Digital Library

Optics Express

Optics Express

  • Editor: Martijn de Sterke
  • Vol. 16, Iss. 20 — Sep. 29, 2008
  • pp: 15563–15575

Beam propagation factor of partially coherent flat-topped beams in a turbulent atmosphere

Youquan Dan and Bin Zhang  »View Author Affiliations

Optics Express, Vol. 16, Issue 20, pp. 15563-15575 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (378 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The Wigner distribution function (WDF) has been used to study the beam propagation factor (M2-factor) for partially coherent flat-topped (PCFT) beams with circular symmetry in a turbulent atmosphere. Based on the extended Huygens–Fresnel principle and the definition of the WDF, an expression for the WDF of PCFT beams in turbulence has been given. By use of the second-order moments of the WDF, the analytical formulas for the root-mean-square (rms) spatial width, the rms angular width, and the M2-factor of PCFT beams in turbulence have been derived, which can be applied to cases of different spatial power spectra of the refractive index fluctuations. The rms angular width and the M2-factor of PCFT beams in turbulence have been discussed with numerical examples. It can be shown that the M2-factor of PCFT beams in turbulence depends on the beam order, degree of global coherence of the source, waist width, wavelength, spatial power spectrum of the refractive index fluctuations, and propagation distance.

© 2008 Optical Society of America

OCIS Codes
(010.1300) Atmospheric and oceanic optics : Atmospheric propagation
(010.1330) Atmospheric and oceanic optics : Atmospheric turbulence
(010.3310) Atmospheric and oceanic optics : Laser beam transmission
(030.0030) Coherence and statistical optics : Coherence and statistical optics

ToC Category:
Atmospheric and oceanic optics

Original Manuscript: June 26, 2008
Revised Manuscript: August 30, 2008
Manuscript Accepted: September 10, 2008
Published: September 17, 2008

Youquan Dan and Bin Zhang, "Beam propagation factor of partially coherent flat-topped beams in a turbulent atmosphere," Opt. Express 16, 15563-15575 (2008)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. Ishimaru, "Theory and application of wave propagation and scattering in random media," Proc. IEEE 65, 1030-1061 (1977). [CrossRef]
  2. A. Ishimaru, Wave Propagation and Scattering in Random Media (Academic, New York, 1978).
  3. L. C. Andrews and R. L. Phillips, Laser Beam Propagation through Random Media, 2nd ed. (SPIE, Bellingham, 2005). [CrossRef]
  4. J. Wu, "Propagation of a Gaussian-Schell beam through turbulent media," J. Mod. Opt. 37, 671-684 (1990). [CrossRef]
  5. J. Wu and A. D. Boardman, "Coherence length of a Gaussian-Schell beam and atmospheric turbulence," J. Mod. Opt. 38, 1355-1363 (1991). [CrossRef]
  6. G. Gbur and E. Wolf, "Spreading of partially coherent beams in random media," J. Opt. Soc. Am. A 19, 1592-1598 (2002). [CrossRef]
  7. S. A. Ponomarenko, J. -J. Greffet, and E. Wolf, "The diffusion of partially coherent beams in turbulent media," Opt. Commun. 208, 1-8 (2002). [CrossRef]
  8. T. Shirai, A. Dogariu, and E. Wolf, "Mode analysis of spreading of partially coherent beams propagating through atmospheric turbulence," J. Opt. Soc. Am. A 20, 1094-1102 (2003). [CrossRef]
  9. A. Dogariu and S. Amarande, "Propagation of partially coherent beams: turbulence-induced degradation," Opt. Lett. 28, 10-12 (2003). [CrossRef] [PubMed]
  10. A. Walther, "Radiometry and coherence," J. Opt. Soc. Am. 58, 1256-1259 (1968). [CrossRef]
  11. M. J. Bastiaans, "Application of the Wigner distribution function to partially coherent light," J. Opt. Soc. Am. A 3, 1227-1238 (1986). [CrossRef]
  12. J. Serna, R. Martínez-Herrero, and P. M. Mejías, "Parametric characterization of general partially coherent beams propagating through ABCD optical systems," J. Opt. Soc. Am. A 8, 1094-1098 (1991). [CrossRef]
  13. R. Martínez-Herrero, G. Piquero, and P. M. Mejías, "On the propagation of the kurtosis parameter of general beams," Opt. Commun. 115, 225-232 (1995). [CrossRef]
  14. A. E. Siegman, "New developments in laser resonators," Proc. SPIE. 1224, 2-14 (1990). [CrossRef]
  15. F. Gori, M. Santarsiero, and A. Sona, "The change of width for a partially coherent beam on paraxial propagation," Opt. Commun. 82, 197-203 (1991). [CrossRef]
  16. M. Santarsiero, F. Gori, R. Borghi, G. Cincotti, and P. Vahimaa, "Spreading properties of beams radiated by partially coherent Schell-model sources," J. Opt. Soc. Am. A 16, 106-112 (1999). [CrossRef]
  17. C. Palma, P. De Santis, G. Cincotti, and G. Guattari, "Propagation and coherence evolution of optical beams in gain media," J. Mod. Opt. 43, 139-153 (1996). [CrossRef]
  18. B. Zhang, Q. Wen, and X. Guo, "Beam propagation factor of partially coherent beams in gain or absorbing media," Optik 117, 123-127 (2006). [CrossRef]
  19. M. H. Mahdieh, "Numerical approach to laser beam propagation through turbulent atmosphere and evaluation of beam quality factor," Opt. Commun. 281, 3395-3402 (2008). [CrossRef]
  20. Y. Li, "Light beams with flat-topped profiles," Opt. Lett. 27, 1007-1009 (2002). [CrossRef]
  21. Y. Li, "New expressions for flat-topped light beams," Opt. Commun. 206, 225-234 (2002). [CrossRef]
  22. Y. Dan, B. Zhang, and P. Pan, "Propagation of partially coherent flat-topped beams through a turbulent atmosphere," J. Opt. Soc. Am. A 25, 2223-2231 (2008). [CrossRef]
  23. X. Ji, X. Chen, S. Chen, X. Li, and B. Lü, "Influence of atmospheric turbulence on the spatial correlation properties of partially coherent flat-topped beams," J. Opt. Soc. Am. A 24, 3554-3563 (2007). [CrossRef]
  24. M. Zahid and M. S. Zubairy, "Directionality of partially coherent Bessel-Gauss beams," Opt. Commun. 70, 361-364 (1989). [CrossRef]
  25. A. Starikov and E. Wolf, "Coherent-mode representation of Gaussian Schell-model sources and of their radiation fields," J. Opt. Soc. Am. 72, 923-928 (1982). [CrossRef]
  26. L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge University Press, Cambridge, 1995).
  27. R. N. Bracewell, The Fourier Transform and Its Applications, 2nd ed. (McGraw-Hill, New York, 1986).
  28. X. Ji and B. Lü, "Turbulence-induced quality degradation of partially coherent beams," Opt. Commun. 251, 231-236 (2005). [CrossRef]
  29. G. Wu, H. Guo, and D. Deng, "Paraxial propagation of partially coherent flat-topped beam," Opt. Commun. 260, 687-690 (2006). [CrossRef]
  30. H. T. Eyyubo?lu, C. Arpali, and Y. Baykal, "Flat topped beams and their characteristics in turbulent media," Opt. Express 14, 4196-4207 (2006). [CrossRef] [PubMed]
  31. I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series, and Products, 5th ed. (Academic, New York, 1980).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited