OSA's Digital Library

Optics Express

Optics Express

  • Editor: Martijn de Sterke
  • Vol. 16, Iss. 20 — Sep. 29, 2008
  • pp: 15603–15616

Reversed dispersion slope photonic bandgap fibers for broadband dispersion control in femtosecond fiber lasers

Z. Várallyay, K. Saitoh, J. Fekete, K. Kakihara, M. Koshiba, and R. Szipőcs  »View Author Affiliations

Optics Express, Vol. 16, Issue 20, pp. 15603-15616 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (1013 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Higher-order-mode solid and hollow core photonic bandgap fibers exhibiting reversed or zero dispersion slope over tens or hundreds of nanometer bandwidths within the bandgap are presented. This attractive feature makes them well suited for broadband dispersion control in femtosecond pulse fiber lasers, amplifiers and optical parametric oscillators. The canonical form of the dispersion profile in photonic bandgap fibers is modified by a partial reflector layer/interface placed around the core forming a 2D cylindrical Gires-Tournois type interferometer. This small perturbation in the index profile induces a frequency dependent electric field distribution of the preferred propagating higher-order-mode resulting in a zero or reversed dispersion slope.

© 2008 Optical Society of America

OCIS Codes
(060.2280) Fiber optics and optical communications : Fiber design and fabrication
(060.5295) Fiber optics and optical communications : Photonic crystal fibers

ToC Category:
Photonic Crystal Fibers

Original Manuscript: May 20, 2008
Revised Manuscript: July 24, 2008
Manuscript Accepted: September 12, 2008
Published: September 18, 2008

Z. Várallyay, K. Saitoh, J. Fekete, K. Kakihara, M. Koshiba, and R. Szipocs, "Reversed dispersion slope photonic bandgap fibers for broadband dispersion control in femtosecond fiber lasers," Opt. Express 16, 15603-15616 (2008)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. Wandel and P. Kristensen, "Fiber designs for high figure of merit and high slope dispersion compensating fibers," J. Opt. Fiber. Commun. Rep. 3, 25-60 (2005). [CrossRef]
  2. L. Grüner-Nielsen, M. Wandel, P. Kristensen, C. Jørgensen, L. V. Jørgensen, B. Edvold, B. Pálsdóttir, and D. Jakobsen, "Dispersion-Compensating Fibers," J. Lightwave Technol. 23, 3566-3579 (2005). [CrossRef]
  3. S. Ramachandran, S. Ghalmi, J. W. Nicholson, M. F. Yan, P. Wisk, E. Monberg, and F. V. Dimarcello, "Anomalous dispersion in a solid, silica-based fiber," Opt. Lett. 31, 2532-2534 (2006). [CrossRef] [PubMed]
  4. J. W. Nicholson, S. Ramachandran, and S. Ghalmi, "A passively-modelocked, Yb-doped, figure-eight, fiber laser utilizing anomalous-dispersion higher-order-mode fiber," Opt. Express 15, 6623-6628 (2007). [CrossRef] [PubMed]
  5. P. St. J. Russell, "Photonic-Crystal Fibers," J. Lightwave Technol. 24, 4729-4749 (2006). [CrossRef]
  6. J. Jasapara, T. H. Her, R. Bise, R. Windeler, and D. J. DiGiovanni, "Group-velocity dispersion measurements in a photonic bandgap fiber," J. Opt. Soc. Am. B 20, 1611-1615 (2003).
  7. C. K. Nielsen, K. G. Jespersen, and S. R. Keiding, "A 158 fs 5.3 nJ fiber-laser system at 1 ?m using photonic bandgap fibers for dispersion control and pulse compression," Opt. Express 14, 6063-6068 (2006). [CrossRef] [PubMed]
  8. A. Ruehl, O. Prochnow, M. Engelbrecht, D. Wandt, and D. Kracht, "Similariton fiber laser with a hollow-core photonic bandgap fiber for dispersion control," Opt. Lett. 32, 1084-1086 (2007). [CrossRef] [PubMed]
  9. C. de Matos, J. Taylor, T. Hansen, K. Hansen, and J. Broeng, "All-fiber chirped pulse amplification using highlydispersive air-core photonic bandgap fiber," Opt. Express 11, 2832-2837 (2003). [CrossRef] [PubMed]
  10. J. C. Knight, "Photonic crystal fibers," Nature 424, 847-851 (2003). [CrossRef] [PubMed]
  11. K. Saitoh and M. Koshiba, "Leakage loss and group velocity dispersion in air-core photonic bandgap fibers," Opt. Express 11, 3100-3109 (2003). [CrossRef] [PubMed]
  12. B. Rózsa, G. Katona, E. S. Vizi, Z. Várallyay, A. Sághy, L. Valenta, P. Maák, J. Fekete, ??. Bányász, and R. Szipöcs, "Random access three-dimensional two-photon microscopy," Appl. Opt. 46, 1860-1865 (2007). [CrossRef] [PubMed]
  13. D. G. Ouzonov, F. R. Ahmad, D. Müller, N. Venkataraman, M. T. Gallagher, M. G. Thomas, J. Silcox, K. W. Koch, and A. L. Gaeta, "Generation of Megawatt optical solitons in hollow-core photonic band-gap fibers," Science 301, 1702-1704 (2003). [CrossRef]
  14. D. G. Ouzounov, Ch. J. Hensley, A. L. Gaeta, N. Venkateraman, M. T. Gallagher, and K. W. Koch, " Soliton pulse compression in photonic band-gap fibers" Opt. Express 13, 6153-6159 (2005). [CrossRef] [PubMed]
  15. Q. Fang, Z. Wang, L. Jin, J. Liu, Y. Yue, Y. Liu, G. Kai, S. Yuan, and X. Dong, "Dispersion design of all-solid photonic bandgap fiber," J. Opt. Soc. Am. B 24, 2899-2905 (2007).
  16. G. Vienne, Y. Xu, C. Jakobsen, H. J. Deyerl, J. Jensen, T. Sorensen, T. Hansen, Y. Huang, M. Terrel, R. Lee, N. Mortensen, J. Broeng, H. Simonsen, A. Bjarklev, and A. Yariv, "Ultra-large bandwidth hollow-core guiding in all-silica Bragg fibers with nano-supports," Opt. Express 12, 3500-3508 (2004). [CrossRef] [PubMed]
  17. J. Fekete, Z. Várallyay and R. Szipöcs, "Design of leaking mode free hollow core photonic bandgap fibers," JWA4, OFC/NFOEC Conference, San Diego, CA, 2008.
  18. P. Yeh, A. Yariv, and E. Marom, "Theory of Bragg fiber" J. Opt. Soc. Am. 68, 1196-1201 (1978). [CrossRef]
  19. I. T. Sorokina, E. Sorokin, E. Wintner, A. Cassanho, H. P. Jenssen, R. Szipöcs, "Prismless passively mode-locked femtosecond Cr:LiSGaF laser," Opt. Lett. 21, 1165-1167 (1996). [CrossRef] [PubMed]
  20. R. Szipöcs, A. Köházi-Kis, S. Lakó, P. Apai, A. P. Kovács, G. DeBell, L. Mott, A.W. Louderback, A. V. Tikhonravov, and M. K. Trubetskov, "Negative dispersion mirrors for dispersion control in femtosecond lasers: chirped dielectric mirrors and multi-cavity Gires-Tournois interferometers," Appl. Phys. B 70, S51-S57 (2000).
  21. H. A. Macleod, Thin-film optical filters, 3rd edition, (Taylor & Francis Group, Oxon, GB, 2001).
  22. S. Février, R. Jamier, J.-M. Blondy, S. L. Semjonov, M. E. Likhachev, M. M. Bubnov, E. M. Dianov, V. F. Khopin, M. Y. Salganskii, and A. N. Guryanov, "Low-loss single mode large mode area all-silica photonic bandgap fiber," Opt. Express 14, 562-569 (2006). [CrossRef] [PubMed]
  23. http://www.cvilaser.com/Common/PDFs/dispersion equations.pdf
  24. Z. Várallyay, J. Fekete, and R. Szipöcs, "Higher-order mode photonic bandgap fibers with reversed dispersion slope," JWA8, OFC/NFOEC Conference, San Diego, CA, 2008.
  25. K. S. Lee and T. Erdogan, "Fiber mode conversion with tilted gratings in an optical fiber," J. Opt. Soc. Am. A 18, 1176-1185 (2001). [CrossRef]
  26. A. Ferrando, E. Silvestre, J. J. Miret, P. Andrés, and M. V. Andrés, "Full-vector analysis of realistic photonic crystal fiber," Opt. Lett. 24, 276-278 (1999). [CrossRef]
  27. K. Saitoh, M. Koshiba, T. Hasegawa, and E. Sasaoka, "Chromatic dispersion control in photonic crystal fibers: application to ultra-flattened dispersion," Opt. Express 11, 843-852 (2003). [CrossRef] [PubMed]
  28. G. K. L. Wong, S. G. Murdoch, R. Leonhardt, J. D. Harvey, and V. Marie, "High-conversion-efficiency widelytunable all-fiber optical parametric oscillator," Opt. Express 15, 2947-2952 (2007). [CrossRef] [PubMed]
  29. R. Amezcua-Correa, N. G. Broderick, M. N. Petrovich, F. Poletti, and D. J. Richardson, "Optimizing the usable bandwidth and loss through core design in realistic hollow-core photonic bandgap fibers," Opt. Express 14, 7974-7985 (2006). [CrossRef] [PubMed]
  30. M. Foroni, D. Passaro, F. Poli, A. Cucinotta, S. Selleri, J. Lægsgaard, A. Bjarklev, and V. Marie, "Tailoring of the transmission window in realistic hollow-core Bragg bers," JWA7, OFC/NFOEC Conference, San Diego, CA, 2008.
  31. T. Murao, K. Saitoh, and M. Koshiba, "Structural optimization of ultimate low loss air-guiding photonic bandgap fibers," JWA5, OFC/NFOEC Conference, San Diego, CA, 2008.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited