OSA's Digital Library

Optics Express

Optics Express

  • Editor: Martijn de Sterke
  • Vol. 16, Iss. 20 — Sep. 29, 2008
  • pp: 15633–15639

Study of surface relief gratings on azo organometallic films in picosecond regime

J. Luc, K. Bouchouit, R. Czaplicki, J.-L. Fillaut, and B. Sahraoui  »View Author Affiliations

Optics Express, Vol. 16, Issue 20, pp. 15633-15639 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (170 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Materials for optical data storage and optical information processing must exhibit good holographic properties. Many materials for these applications have been already proposed. Here we describe a grating inscription process characterized by short inscription time and long-time stability. A series of ruthenium-acetylide organometallic complexes containing an azobenzene fragment were synthesized. Photo-induced gratings were produced by short pulse (16 ps, 532 nm) laser irradiation. The surface relief gratings formed at the same time were observed by atomic force microscope. In this work, we highlight the short inscription times brought into play as well as the good temporal stability of these gratings stored at room temperature. We study the influence of the polarization states and the light intensity of writing beams on the dynamics of the surface relief gratings formation and we compare these results with those of a known representative of azobenzene derivative (Disperse Red 1). Lastly, we show that it is possible to write two-dimensional surface relief gratings.

© 2008 Optical Society of America

OCIS Codes
(050.1950) Diffraction and gratings : Diffraction gratings
(160.4670) Materials : Optical materials
(190.7070) Nonlinear optics : Two-wave mixing
(190.7110) Nonlinear optics : Ultrafast nonlinear optics

ToC Category:
Diffraction and Gratings

Original Manuscript: April 8, 2008
Revised Manuscript: May 26, 2008
Manuscript Accepted: June 6, 2008
Published: September 19, 2008

J. Luc, K. Bouchouit, R. Czaplicki, J.-L. Fillaut, and B. Sahraoui, "Study of surface relief gratings on azo organometallic films in picosecond regime," Opt. Express 16, 15633-15639 (2008)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. S. Barlow, S. R. Marder, "Electronic and optical properties of conjugated group 8 metallocene derivatives," Chem. Commun. 2000, 1555-1562 (2000). [CrossRef]
  2. H. Le Bozec, T. Renouard, "Dipolar and non-dipolar pyridine and bipyridine metal complexes for nonlinear optics," Eur. J. Inorg. Chem. 2000, 229-239 (2000). [CrossRef]
  3. C. E. Powell, M. G. Humphrey, "Nonlinear optical properties of transition metal acetylides and their derivatives," Coord. Chem. Rev. 248, 725-756 (2004). [CrossRef]
  4. B. J. Coe, "Switchable nonlinear optical metallochromophores with pyridinium electron acceptor groups," Acc. Chem. Res. 39, 383-393 (2006). [CrossRef] [PubMed]
  5. P. Yuan, J. Yin, G. Yu, Q. Hu, S. Hua Liu, "Synthesis and second-order NLO properties of donor-acceptor ??-alkenyl ruthenium complexes," Organometallics 26, 196-200 (2007). [CrossRef]
  6. B. J. Coe, S. Houbrechts, I. Asselberghs, A. Persoons, "Efficient, reversible redox-switching of molecular first hyperpolarizabilities in ruthenium(II) complexes possessing large quadratic optical nonlinearities," Angew. Chem. Int. Ed. 38, 366-369 (1999). [CrossRef]
  7. S. K. Hurst, M. P. Cifuentes, A. M. McDonagh, M. G. Humphrey, M. Samoc, B. Luther-Davies, I. Asselberghs, A. Persoons, "Organometallic complexes for nonlinear optics. Quadratic and cubic hyperpolarizabilities of some dipolar and quadrupolar gold and ruthenium complexes," J. Organomet. Chem. 642, 259-267 (2002). [CrossRef]
  8. N. J. Long and C. K. Williams, "Metal alkynyl ?? complexes: Synthesis and Materials," Angew. Chem. Int. Ed. 2003, 2586-2617 (2003).
  9. J. Luc, J.-L. Fillaut, J. Niziol, B. Sahraoui, "Large third-order nonlinear optical properties of alkynyl ruthenium chromophore thin films using third harmonic generation," J. Opt. Adv. Mater. 9, 2826-2832 (2007).
  10. J. Luc, A. Migalska-Zalas, S. Tkaczyk, J. Andriès, J.-L. Fillaut, A. Meghea, B. Sahraoui, "Nonlinear optical effects in new alkynyl-ruthenium containing nanocomposites," J. Opt. Adv. Mater. 10, 29-43 (2008).
  11. A. Miniewicz, B. Sahraoui, E. Schab-Balcerzak, A. Sobolewska, A. C. Mitus, F. Kajzar, "Pulsed-laser grating recording in organic materials containing azobenzene derivatives," Nonliner Opt. Quantum. Opt. 35, 95-102 (2006).
  12. O. Baldus, A. Leopold, R. Hagen, T. Bieringer, S. J. Zilker, "Surface relief gratings generated by pulsed holography: A simple way to polymer nanostructures without isomerizing side-chains," J. Chem. Phys. 114, 1344-1349 (2001). [CrossRef]
  13. Y. Li, K. Yamada, T. Ishizuka, W. Watanabe, K. Itoh, Z. Zhou, "Single femtosecond pulse holography using polymethyl methacrylate," Opt. Expess 10, 1173-1178 (2002). http://www.opticsinfobase.org/abstract.cfm?URI=oe-10-21-1173
  14. P. S. Ramanujam, M. Pedersen, S. Hvilsted, "Instant holography," Appl. Phys. Lett. 74, 3227-3229 (1999). [CrossRef]
  15. C. V. Shank, J. E. Bjorkholm, H. Kogelnik, "Tunable distributed-feedback dye laser," Appl. Phys. Lett. 18, 395-396 (1971). [CrossRef]
  16. R. Czaplicki, O. Krupka, Z. Essaïdi, A. El-Ghayoury, F. Kajzar, J.G. Grote, and B. Sahraoui, "Grating inscription in picosecond regime in thin films of functionalized DNA," Opt. Exp. 15, 15268-15273 (2007). http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-23-15268 [CrossRef]
  17. F. Lagugné-Labarthet, T. Buffeteau, C. Sourisseau, "Molecular orientations in azopolymer holographic diffraction gratings as studied by Raman confocal microspectrometry," J. Phys. Chem. B 102, 5754-5765 (1998).
  18. B. Bellini, J. Ackermann, H. Klein, C. Grave, P. Dumas, V. Safarov, "Light-induced molecular motion of azobenzene-containing molecules: a random-walk model," J. Phys. Condens. Matter 18, 1817-1835 (2006). [CrossRef]
  19. C. Fiorini, N. Prudhomme, G. De Veyrac, I. Maurin, P. Raimond, J.-M. Nunzi, "Molecular migration mechanism for laser induced surface relief grating formation," Synth. Met. 115, 121-125 (2000). [CrossRef]
  20. E. Toussaere, P. Labbé, "Linear and non-linear gratings in DR1 side chain polymers," Opt. Mat. 12, 357-362 (1999). [CrossRef]
  21. C. J. Barrett, A. L. Natansohn, P. L. Rochon, "Mechanism of optically inscribed high-efficiency diffraction gratings in azo polymer films," J. Phys. Chem. 100, 8836-8842 (1996). [CrossRef]
  22. C. Chun, J. Ghim, M.-J. Kim, D. Y. Kim, "Photofabrication of surface relief gratings from azobenzene containing perfluorocyclobutane aryl ether polymer," J. Polym. Sci.: Part A: Polym. Chem. 43, 3525-3532 (2005). [CrossRef]
  23. Y. He, X. Wang, Q. Zhou, "Synthesis and characterization of a novel photoprocessible hyperbranched azo polymer," Synth. Met. 132, 245-248 (2003). [CrossRef]
  24. M. Kim, B. Kang, S. Yang, C. Drew, L. A. Samuelson, J. Kumar, "Facile patterning of periodic arrays of metal oxides," Adv. Mater. 18, 1622-1626 (2006). [CrossRef]
  25. H. Nakano, T. Tanino, T. Takahashi, H. Andoa, Y. Shirotaab, "Relationship between molecular structure and photoinduced surface relief grating formation using azobenzene-based photochromic amorphous molecular materials," J. Mater. Chem. 18, 242-246 (2008). [CrossRef]
  26. N. K. Viswanathan, D. Y. Kim, S. Bian, J. Williams, W. Liu, L. Li, L. Samuelson, J. Kumar, S. K. Tripathy, "Surface relief structures on azo polymer films," J. Mater. Chem. 9, 1941-1955 (1999). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited