OSA's Digital Library

Optics Express

Optics Express

  • Editor: Martijn de Sterke
  • Vol. 16, Iss. 20 — Sep. 29, 2008
  • pp: 15677–15693

Color-changing and color-tunable photonic bandgap fiber textiles

B. Gauvreau, N. Guo, K. Schicker, K. Stoeffler, F. Boismenu, A. Ajji, R. Wingfield, C. Dubois, and M. Skorobogatiy  »View Author Affiliations

Optics Express, Vol. 16, Issue 20, pp. 15677-15693 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (5627 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present the fabrication and use of plastic Photonic Band Gap Bragg fibers in photonic textiles for applications in interactive cloths, sensing fabrics, signage and art. In their cross section Bragg fibers feature periodic sequence of layers of two distinct plastics. Under ambient illumination the fibers appear colored due to optical interference in their microstructure. Importantly, no dyes or colorants are used in fabrication of such fibers, thus making the fibers resistant to color fading. Additionally, Bragg fibers guide light in the low refractive index core by photonic bandgap effect, while uniformly emitting a portion of guided color without the need of mechanical perturbations such as surface corrugation or microbending, thus making such fibers mechanically superior to the standard light emitting fibers. Intensity of side emission is controlled by varying the number of layers in a Bragg reflector. Under white light illumination, emitted color is very stable over time as it is defined by the fiber geometry rather than by spectral content of the light source. Moreover, Bragg fibers can be designed to reflect one color when side illuminated, and to emit another color while transmitting the light. By controlling the relative intensities of the ambient and guided light the overall fiber color can be varied, thus enabling passive color changing textiles. Additionally, by stretching a PBG Bragg fiber, its guided and reflected colors change proportionally to the amount of stretching, thus enabling visually interactive and sensing textiles responsive to the mechanical influence. Finally, we argue that plastic Bragg fibers offer economical solution demanded by textile applications.

© 2008 Optical Society of America

OCIS Codes
(060.2280) Fiber optics and optical communications : Fiber design and fabrication
(230.1480) Optical devices : Bragg reflectors
(060.4005) Fiber optics and optical communications : Microstructured fibers
(060.5295) Fiber optics and optical communications : Photonic crystal fibers

ToC Category:
Photonic Crystal Fibers

Original Manuscript: June 20, 2008
Revised Manuscript: September 16, 2008
Manuscript Accepted: September 16, 2008
Published: September 19, 2008

B. Gauvreau, N. Guo, K. Schicker, K. Stoeffler, F. Boismenu, A. Ajji, R. Wingfield, C. Dubois, and M. Skorobogatiy, "Color-changing and color-tunable photonic bandgap fiber textiles," Opt. Express 16, 15677-15693 (2008)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. P. S. Uskokovic, M. Miljkovic, M. Krivokuca, S. S. Putic, R. Aleksici, "An intensity based optical fibre sensor for flexural damage detection in woven composites," Adv. Compos. Lett. 8, 55-58 (1999).
  2. P. S. Uskokovic, I. Balac, L. Brajovic, M. Simic, S. Putic, and R. Aleksic, "Delamination detection in woven composite laminates with embedded optical fibers," Adv. Eng. Mater. 3, 492-496 (2001). [CrossRef]
  3. E. D???Amato, "Stress-strain monitoring in textile composites by means of optical fibers," Exp.Techniques & Design in Composite Mat. 221, 245-253 (2002).
  4. K.S.C. Kuang and W.J. Cantwell, "Detection of impact damage in thermoplastic-based glass fiber composites using embedded optical fiber sensors," J. Thermoplastic Composite Mat. 16, 213-229 (2003). [CrossRef]
  5. I. Zivkovic, L. Brajovic, P. Uskokovic, R. Aleksic, "Indentation damage detection in thermoplastic composite laminates by using embedded optical fibers," J. Adv. Mater. 37, 33-37 (2005).
  6. A. Kojovic, I. Zivkovic, L. Brajovic, D. Mitrakovic, R. Aleksic, "Low energy impact damage detection in laminar termoplastic composite materials by means of embedded optical fibers," Curr. Res. Adv. Mater. Process 494, 481-486 (2005).
  7. M. A. El-Sherif, J. M. Yuan, A. MacDiarmid, "Fiber optic sensors and smart fabrics," J. Intel. Mater. Syst. Struct. 11, 407-414 (2000).
  8. S. Ghosh, C. Amidei, K. Furrow, "Development of a sensor-embedded flexible textile structure for apparel or large area applications," Indian J. Fibre Textile Res. 30, 42-48 (2005).
  9. Y. H. Zheng, N. P. Pitsianis, D. J. Brady, "Nonadaptive group testing based fiber sensor deployment for multiperson tracking," IEEE Sens. J. Color Res. Appl. 6, 490-494 (2006).
  10. J. Spigulis, D. Pfafrods, M. Stafekis, and W. Jelinska-Platace, "The 'glowing??? optical fibre designs and parameters," Proc. SPIE 2967, 231-6 (1997). [CrossRef]
  11. http://www.lumigram.com/
  12. B. Selem, M. Rothmaier, M. Camenzind, T. Khan, H. Walt, "Novel flexible light diffuser and irradiation properties for photodynamic therapy," J. Biomed. Opt. 12, 034024 (2007). [CrossRef]
  13. http://www.lumitex.com/technologies.html
  14. A. Harlin, M. Makinen, A. Vuorivirta, "Development of polymeric optical fibre fabrics as illumination elements and textile displays," AUTEX Res. J. 3, (2003).
  15. R. M. Balachandran, D. P. Pacheco, N. M. Lawandy, "Photonic textile fibers," Appl. Opt. 35, 91-1994 (1996). [CrossRef]
  16. O. Shapira, K. Kuriki, N. D. Orf, A. F. Abouraddy, G. Benoit, J. F. Viens, A. Rodriguez, M. Ibanescu, J. D. Joannopoulos, Y. Fink, "Surface-emitting fiber lasers," Opt. Express 14, 3929-3935 (2006). [CrossRef] [PubMed]
  17. M. Hatcher, "France telecom debuts fiber screen," Optics.org News, Jul 2 (2002).
  18. V. Koncar, "Optical fiber fabric displays," Opt. Photon. News 16, 40-4 (2005). [CrossRef]
  19. A. Wakita, M. Shibutani, "Mosaic Textile: Wearable ambient display with non-emissive color-changing modules," Proc. ACE 06, (2006).
  20. J. Berzowska and A. Banasik, "Very slowly animating textiles: Shimmering flower," Proc. SIGGRAPH (2004).
  21. S. S. Hardaker and R. V. Gregory, "Progress toward dynamic color-responsive "chameleon" fiber systems," MRS Bull. 28, 564-567 (2003). [CrossRef]
  22. T. Z. N. Sokkar, M. A. Kabeel, W. A. Ramadan, A. A. Hamza, "A contribution to the study of color of fabrics," Color Res. Appl. 17, 219-224 (1992). [CrossRef]
  23. B. Rubin, H. Kobsa, S. M. Shearer, "Prediction and verification of an iridescent synthetic fiber," Appl. Opt. 36, 6388-6392 (1997). [CrossRef]
  24. M. M. Grasso, B. D. Hunn, A. M. Rewerts, "Effect of textile properties in evaluating a directional shading fabric," Textile Res. J. 67, 233-247 (1997).
  25. J. Schuster, M. Trahan, D. Heider,W. Li, "Influence of fabric ties on the performance of woven-in optical fibres," Composites Part A  34, 855-861 (2003). [CrossRef]
  26. I. Maekawa, T. Gunji, T. Tsuboi, "Study on optical properties of silk-like fabrics," J. Textile Machinery Soc. Japan 30, 18-27 (1984). [CrossRef]
  27. B. Rubin, H. Kobsa, S. M. Shearer, "Modeling the dependence of fabric reflectance on denier per filament," Textile Res. J. 64, 685-689 (1994). [CrossRef]
  28. A. Sirikasemlert and X. Tao, "Effects of fabric parameters on specular reflection of single-jersey knitted fabrics," Textile Res. J. 69, 663-675 (1999). [CrossRef]
  29. S. Yamaguchi and H. Takanabe, "Fibers having fine concave and convex surface from silica hybrid polyester," Sen-I akkaishi 57, 111-119 (2001). [CrossRef]
  30. H. Q. Zhang, W. D. Gao, and H. Qiu, "Retro-reflection of round fibers," Textile Res. J. 73, 965-970 (2003). [CrossRef]
  31. B. Rubin, "Tailored fiber cross sections," Adv. Mater. 10, 1225-1227 (1999). [CrossRef]
  32. J. C. Knight, T. A. Birks, R. S. J. Russell, J. G. Rarity, "Bragg scattering from an obliquely illuminated photonic crystal fiber," Appl. Opt. 37, 449-452 (1998). [CrossRef]
  33. K. Morikawa, T. Fujisawa, K. Saitoh,M. Koshiba, "Transmission characteristics of laterally illuminated photonic crystal fibers," IEICE Electron Express 3, 70-73 (2006). [CrossRef]
  34. K. Busch and S. John "Liquid-Crystal Photonic-Band-Gap Materials: The Tunable Electromagnetic Vacuum," Phys. Rev. Lett. 83, 967-970 (1999). [CrossRef]
  35. H. Fudouzi and Y. N. Xia, "Colloidal crystals with tunable colors and their use as photonic papers," Langmuir 19, 9653-9660 (2003). [CrossRef]
  36. T. T. Larsen, A. Bjarklev, D. S. Hermann, and J. Broeng, "Optical devices based on liquid crystal photonic bandgap fibres," Opt. Express 11, 2589-2596 (2003). [CrossRef] [PubMed]
  37. S. D. Hart, G. R. Maskaly, B. Temelkuran, P. H. Prideaux, J. D. Joannopoulos, and Y. Fink, "External reflection from omnidirectional dielectric mirror fibers," Science 296, 510-513 (2002). [CrossRef] [PubMed]
  38. G. Benoit, S. D. Hart, B. Temelkuran, J. D. Joannopoulos, and Y. Fink, "Static and dynamic properties of optical micro-cavities in photonic bandgap yarns," Adv. Mater. 15, 2053-2056, (2003). [CrossRef]
  39. A. Dupuis, N. Guo, B. Gauvreau, A. Hassani, E. Pone, F. Boismenu, andM. Skorobogatiy, "Guiding in the visible with "colorful" solid-core Bragg fibers," Opt. Lett. 32, 2882-2884 (2007). [CrossRef] [PubMed]
  40. P. St. J. Russell, "Photonic crystal fibers," J. Lightwave. Technol. 24, 4729-4749 (2006). [CrossRef]
  41. G. Vienne, Y. Xu, C. Jakobsen, H. -J. Deyerl, J. Jensen, T. Sorensen, T. Hansen, Y. Huang, M. Terrel, R. Lee, N. Mortensen, J. Broeng, H. Simonsen, A. Bjarklev, and A. Yariv, "Ultra-large bandwidth hollow-core guiding in all-silica Bragg fibers with nano-supports," Opt. Express 12, 3500-3508 (2004). [CrossRef] [PubMed]
  42. A. Argyros, I. Bassett, M. Eijkelenborg, M. Large, J. Zagari, N. A. Nicorovici, R. McPhedran, and C. M. de Sterke, "Ring structures in microstructured polymer optical fibres," Opt. Express 9, 813-820 (2001). [CrossRef] [PubMed]
  43. M. Mignanelli, K. Wani, J. Ballato, S. Foulger, P. Brown, "Polymer microstructured fibers by one-step extrusion," Opt. Express 15, 6183-6189 (2007). [CrossRef] [PubMed]
  44. Y. Gao, N. Guo, B. Gauvreau, M. Rajabian, O. Skorobogata, E. Pone, O. Zabeida, L. Martinu, C. Dubois, M. Skorobogatiy, "Consecutive solvent evaporation and co-rolling techniques for polymer multilayer hollow fiber preform fabrication," J. Mater. Res. 21, 2246-2254 (2006). [CrossRef]
  45. M. Skorobogatiy, "Efficient anti-guiding of TE and TM polarizations in low index core waveguides without the need of omnidirectional reflector," Opt. Lett. 30, 2991 (2005). [CrossRef] [PubMed]
  46. S. G. Johnson, M. Ibanescu, M. Skorobogatiy, O. Weiseberg, T. D. Engeness, M. Soljacic, S. A. Jacobs, J. D. Joannopoulos, Y. Fink, "Low-loss asymptotically single-mode propagation in large core OmniGuide fibers," Opt. Express 9, 748 (2001). [CrossRef] [PubMed]
  47. http://www.crystal-fibre.com/
  48. http://www.omni-guide.com/

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited