OSA's Digital Library

Optics Express

Optics Express

  • Editor: Martijn de Sterke
  • Vol. 16, Iss. 20 — Sep. 29, 2008
  • pp: 15728–15732

Electromagnetically induced transparency on GaAs quantum well to observe hole spin dephasing

Hoonsoo Kang, Jong Su Kim, Sung In Hwang, Young Ho Park, Do-kyeong Ko, and Jongmin Lee  »View Author Affiliations

Optics Express, Vol. 16, Issue 20, pp. 15728-15732 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (100 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Electromagnetically induced transparency (EIT) was observed with transient optical response of exciton correlation in GaAs/AlGaAs quantum well structure. Decoherence of EIT was increased with temperature (12–60 K), which could be simulated by increasing non-radiation decay rate between coherently coupled ground states in Bloch equation for Λ type three level. The non-radiation decay was mainly due to hole spin dephasing in the system for EIT via coulomb correlation. The hole spin dephasing rate was found with increasing lattice temperature and well accorded to the past results of time resolving method with n-doping material.

© 2008 Optical Society of America

OCIS Codes
(190.5970) Nonlinear optics : Semiconductor nonlinear optics including MQW
(320.7130) Ultrafast optics : Ultrafast processes in condensed matter, including semiconductors

ToC Category:
Nonlinear Optics

Original Manuscript: August 19, 2008
Revised Manuscript: September 15, 2008
Manuscript Accepted: September 16, 2008
Published: September 19, 2008

Hoonsoo Kang, Jong Su Kim, Sung In Hwang, Young Ho Park, Do-kyeong Ko, and Jongmin Lee, "Electromagnetically induced transparency on GaAs quantum well to observe hole spin dephasing," Opt. Express 16, 15728-15732 (2008)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. S. E. Harris, "Electromagnetically Induced Transparency," Phys. Today 50, 36-42 (1997).
  2. L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, "Light speed reduction to 17 metres per second in an ultracold atomic gas," Nature 397, 594-598 (1999). [CrossRef]
  3. H. Kang and Y. Zhu, "Observation of large Kerr nonliearity at low light intensity," Phys. Rev. Lett. 91, 093601 (2003). [CrossRef] [PubMed]
  4. H. Kang, G. Hernandez, and Y. Zhu, "Slow-Light Six-Wave Mixing at Low Light Intensities," Phys. Rev. Lett. 93, 073601 (2004). [CrossRef] [PubMed]
  5. C. Ottaviani, S. Rebi?, D. Vitali, and P. Tombesi, "Quantum phase-gate operation based on nonlinear optics: Full quantum analysis," Phys. Rev. A 73, 010301 (2006). [CrossRef]
  6. M. Phillips and H. Wang, "Spin Coherence and Electromagnetically Induced Transparency via Exciton Correlations," Phys. Rev. Lett. 89, 186401 (2002), M. C. Phillips, H. Wang, I. Rumyantsev, N. H. Kwong, R. Takayama, and R. Binder, "Electromagnetically Induced Transparency in Semiconductors via Biexciton Coherence," Phys. Rev. Lett. 91, 183602 (2003). [CrossRef] [PubMed]
  7. K.-M. C. Fu, C. Santori, C. Stanley, M. C. Holland, and Y. Yamamoto, "Coherent Population Trapping of Electron Spins in a High-Purity n-Type GaAs Semiconductor," Phys. Rev. Lett. 95, 187405 (2005). [CrossRef] [PubMed]
  8. V. M. Axt and T. Kuhn, "Femtosecond spectroscopy in semiconductors: a key to coherences, correlations and quantum kinetics," Rep. Prog. Phys. 67, 433-512 (2004). [CrossRef]
  9. C. Ku and C. J. Chang-Hasnain, "Slow light in semiconductor heterostructures," J. Phys. D, Appl. Phys. 40, R93-R107 (2007). [CrossRef]
  10. J. E. Field, K. H. Hahn, and S. E. Harris, "Observation of electromagnetically induced transparency in collisionally broadened lead vapor," Phys. Rev. Lett. 67, 3062-3065 (1991). [CrossRef] [PubMed]
  11. D. F. Phillips, A. Fleischhauer, A. Mair, R. L. Walsworth, and M. D. Lukin, "Storage of Light in Atomic Vapor," We report an experiment in which a light pulse is effectively decelerated and trapped in a vapor of Rb atoms, stored for a controlled period of time, and then released on demand. We accomplish this "storage of light" by dynamically reducing the group velocity of the light pulse to zero, so that the coherent excitation of the light is reversibly mapped into a Zeeman (spin) coherence of the Rb vapor. Phys. Rev. Lett. 86, 783-786 (2001). [CrossRef] [PubMed]
  12. C. C. Byeon, M.-k. Oh, H. Kang, J. Su Kim, H.-G. Choi, M. S. Jeong, C.-s. Kee, D.-k. Ko, and J. Lee, "Coherent absorption spectroscopy with supercontinuum for semiconductor quantum well structure," J. Opt. Soc. Ko. 11, 138-141 (2007). [CrossRef]
  13. N. Peyghambarian, S. W. Koch, and A. Mysyrowicz, Introduction to Semiconductor Optics (Prentics-Hall International, Inc. 1993).
  14. A. P. Heberle, W. W. Ruhle, and K. Ploog, Phys. Rev. Lett. 72, 3887-3890 (1994). [CrossRef] [PubMed]
  15. M. Syperek, D. R. Yakovlev, A. Greilich, J. Misiewicz, M. Bayer, D. Reuter, and A. D. Wieck, "Spin Coherence of Holes in GaAs/(Al,Ga)As Quantum Wells," Phys. Rev. Lett. 99, 187401 (2007) [CrossRef] [PubMed]
  16. M. Gurioli, A. Vinattieri, M. Colocci, C. Deparis, J. Massies, G. Neu, A. Bosacchi, and S. Franchi, "Temperature dependence of the radiative and nonradiative recombination time in GaAs/AlxGa1-xAs quantum-well structures," Phys. Rev. B 44, 3115-3124 (1991). [CrossRef]
  17. T. C. Damen, L. Viña, J. E. Cunningham, J. Shah, and L. J. Sham, "Subpicosecond spin relaxation dynamics of excitons and free carriers in GaAs quantum wells," Phys. Rev. Lett. 67, 3432-3435 (1991). [CrossRef] [PubMed]
  18. B. Baylac, T. Amand, X. Marie, B. Dareys, M. Brousseau, G. Bacquet, and V. Thierry-Mieg, "Hole spin relaxation in n-modulation doped quantum wells," Solid State Commun. 93, 57-60 (1995). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.
Fig. 4.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited