OSA's Digital Library

Optics Express

Optics Express

  • Editor: Martijn de Sterke
  • Vol. 16, Iss. 20 — Sep. 29, 2008
  • pp: 15980–15990

Laser frequency stabilization and control through offset sideband locking to optical cavities

J. I. Thorpe, K. Numata, and J. Livas  »View Author Affiliations

Optics Express, Vol. 16, Issue 20, pp. 15980-15990 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (204 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We describe a class of techniques whereby a laser frequency can be stabilized to a fixed optical cavity resonance with an adjustable offset, providing a wide tuning range for the central frequency. These techniques require only minor modifications to the standard Pound-Drever-Hall locking techniques and have the advantage of not altering the intrinsic stability of the frequency reference. We discuss the expected performance and limitations of these techniques and present a laboratory investigation in which both the sideband techniques and the standard, non-tunable Pound-Drever-Hall technique reached the 100Hz/√Hz level.

© 2008 Optical Society of America

OCIS Codes
(120.2230) Instrumentation, measurement, and metrology : Fabry-Perot
(140.3425) Lasers and laser optics : Laser stabilization

ToC Category:
Lasers and Laser Optics

Original Manuscript: July 8, 2008
Revised Manuscript: August 15, 2008
Manuscript Accepted: August 18, 2008
Published: September 24, 2008

J. I. Thorpe, K. Numata, and J. Livas, "Laser frequency stabilization and control through offset sideband locking to optical cavities," Opt. Express 16, 15980-15990 (2008)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. Drever, J. Hall, F. Kowalski, J. Hough, G. Ford, A. Munley, and H. Ward, "Laser phase and frequency stabilization using an optical resonator," Appl. Phys. B 31, 97-105 (1983). [CrossRef]
  2. J. Hall, L. Ma, M. Taubman, B. Tiemann, F. Hong, O. Pfister, and J. Ye, "Stabilization and frequency measurement of the I2-stabilized Nd:YAG laser," IEEE Trans. Instrum. Meas. 48, 583-586 (1999). [CrossRef]
  3. L. Conti, M. D. Rosa, and F. Marin, "High-spectral-purity laser system for the Auriga detector optical readout," J. Opt. Soc. B 20, 462-468 (2003). [CrossRef]
  4. H. Zhen, H. Ye, X. Liu, D. Zhu, H. Li, Y. Lu, and Q. Wang, "Widely tunable reflection-type Fabry-Perot interferometer based on relaxor ferroelectric poly(vinylidenefluoride-chlorotrifluoroethylene-trifluoroethylene)," Opt. Express,  16, 9595-9600 (2008). [CrossRef] [PubMed]
  5. F. Bondu, P. Fritschel, C. Man, and A. Brillet, "Ultrahigh-spectral-purity laser for the Virgo experiment," Opt. Lett. 21, 582-584 (1996). [CrossRef] [PubMed]
  6. J. Ye and J. Hall, "Optical phase locking in the mircoradian domain: potential applications to NASA spaceborne optical measurements," Opt. Lett. 24, 1838-1840 (1999). [CrossRef]
  7. R. Pound, "Electronic frequency stabilization of microwave oscillators," Rev. Sci. Instrum. 17, 490-505 (1946). [CrossRef] [PubMed]
  8. E. Black, "An introduction to Pound-Drever-Hall laser frequency stabilization," Am. J. Phys. 69, 79-87 (2001). [CrossRef]
  9. K. Numata, A. Kemery, and J. Camp, "Thermal-noise limit in the frequency stabilization of lasers with rigid cavities," Phys. Rev. Lett. 93 (2004). [CrossRef]
  10. J. Alins, A. Matveev, N. Kolachevsky, Th. Udem, and T.W. Hänsch, "Subhertz linewidth diode lasers by stabilization to vibrationally and thermally compensated ultralow-expansion glass Fabry-Pérot cavities," Phys. Rev. A 77, 053809 (2008). [CrossRef]
  11. S. A. Webster, M. Oxborrow, S. Pugla, J. Millo, and P. Gill, "Thermal-noise-limited optical cavity," Phys. Rev. A 77, 033847 (2008). [CrossRef]
  12. B. Sheard, M. Gray, D. McClelland, and D. Shaddock, "Laser frequency stabilization by locking to a LISA arm," Phys. Lett. A 320, 9-21 (2003). [CrossRef]
  13. P. Bender and K. Danzmann, and the LISA Study Team, "Laser interferometer space antenna for the detection of graviational waves, pre-Phase A report," Tech. Rep. MPQ233, Max-Planck-Institut f¨ur Quantenoptik, Gärching (1998). 2nd ed.
  14. P. Welch, "The use of fast fourier transform for the estimation of power spectra: A method based on time averaging over short, modified periodograms," IEEE Trans. Audio Electroacoust. AU-15, 70-73 (1967). [CrossRef]
  15. M. Tröbs and G. Heinzel, "Improved spectrum estimation from digitized time series on a logarithmic frequency axis," Measurement 39, 120-129 (2005). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited