OSA's Digital Library

Optics Express

Optics Express

  • Editor: Martijn de Sterke
  • Vol. 16, Iss. 20 — Sep. 29, 2008
  • pp: 16043–16051

Cutoff wavelength of ridge waveguide near field transducer for disk data storage

Chubing Peng, Eric X. Jin, Thomas W. Clinton, and Mike A. Seigler  »View Author Affiliations

Optics Express, Vol. 16, Issue 20, pp. 16043-16051 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (733 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The electromagnetic eigenmodes of and light transmission through a C-aperture to the far field, and to a storage medium, have been studied based on the full vectorial finite difference method. It is found that the cutoff wavelength of C-aperture waveguides in a gold film is much longer than that in a perfect electric conductor, and the fundamental mode is confined in the gap and polarized with the electric field along the gap. The light transmission resonance through C-apertures to far field and to a storage medium occurs at wavelengths below the waveguide cutoff wavelength. Measurements on the fabricated C-apertures confirm the mode confinement and transmission resonance.

© 2008 Optical Society of America

OCIS Codes
(050.1220) Diffraction and gratings : Apertures
(210.0210) Optical data storage : Optical data storage
(230.7370) Optical devices : Waveguides

ToC Category:
Optical Data Storage

Original Manuscript: August 19, 2008
Revised Manuscript: September 11, 2008
Manuscript Accepted: September 21, 2008
Published: September 24, 2008

Chubing Peng, Eric X. Jin, Thomas W. Clinton, and Mike A. Seigler, "Cutoff wavelength of ridge waveguide near field transducer for disk data storage," Opt. Express 16, 16043-16051 (2008)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. E. Betzig, J. K. Trautman, R. Wolfe, E. M. Gyorgy, P. L. Finn, M. H. Kryder, and C. H. Chang, "Near-field magneto-optics and high density data storage," Appl. Phys. Lett. 61, 142-144 (1992). [CrossRef]
  2. T. Thio, K. M. Pellerin, R. A. Linke, H. J. Lezec, and T. W. Ebbesen, "Enhanced light transmission through a single subwavelength aperture," Opt. Lett. 26, 1972-1974 (2001). [CrossRef]
  3. J. Hashizume and F. Koyama, "Plasmon-enhancement of optical near-field of metal nanoaperture surface-emitting laser," Appl. Phys. Lett. 84, 3226-3228 (2004). [CrossRef]
  4. A. Partovi, D. Peale, M. Wuttig, C. A. Murray, G. Zydzik, L. Hopkins, K. Baldwin, W. S. Hobson, J. Wynn, J. Lopata, L. Dhar, R. Chichester, and J. H-J Yeh, "High-power laser light source for near-field optics and its application to high-density optical data storage," Appl. Phys. Lett. 75, 1515-1517 (1999). [CrossRef]
  5. J. A. Matteo, D. P. Fromm, Y. Yuen, P. J. Schuck, W. E. Moerner, and L. Hesselink, "Spectral analysis of strongly enhanced visible light transmission through single C-shaped nanoapertures," Appl. Phys. Lett. 85, 648-650 (2004). [CrossRef]
  6. R. Grobe, R. Schoelkopf, and D. Prober, "Optical antenna: Towards a unity efficiency near-field optical probe, "Appl. Phys. Lett. 70, 1354-1356 (1997). [CrossRef]
  7. H. F. Hamann, Y. C. Martin, and H. K. Wickramasinghe, "Thermally assisted recording beyond traditional limits," Appl. Phys. Lett. 84, 810-812 (2004). [CrossRef]
  8. T. Matsumoto, Y. Anzai, T. Shintani, K. Nakamura, and T. Nishida, "Writing 40 nm marks by using a beaked metallic plate near-field optical probe," Opt. Lett. 31, 259-261 (2006). [CrossRef] [PubMed]
  9. P. Muhlschlegel, H. J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, "Resonant Optical Antennas," Science 308, 1607-1609 (2005).
  10. E. Cubukcu, E. A. Kort, K. B. Crozier, and F. Capasso, "Plasmonic laser antenna," Appl. Phys. Lett. 89, 093120 (2006). [CrossRef]
  11. H. Shin, P. B. Catrysse, and S. Fan, "Effect of the plasmonic dispersion relation on the transmission properties of subwavelength cylindrical holes," Phys. Rev. B 72, 085436 (2005).
  12. K. J. Webb and J. Li, "Analysis of transmission through small apertures in conducting films," Phys. Rev. B 73, 033401 (2006).
  13. R. Gordon and A. G. Brolo, "Increased cut-off wavelength for a subwavelength hole in a real metal," Opt. Express 13, 1933-1938 (2005). [CrossRef] [PubMed]
  14. F. J. Garcia-Vidal, L. Martin-Moreno, E. Moreno, L. K. S. Kumar, and R. Gordon, "Transmission of light through a single rectangular hole in a real metal," Phys. Rev. B 74, 153411 (2006).
  15. X. Shi and L. Hesselink, "Ultrahigh light transmission through a C-shaped nanoaperture," Opt. Lett. 28, 1320-1322 (2003). [CrossRef] [PubMed]
  16. A. R. Zakharian, M. Mansuripur, and J. V. Moloney, "Transmission of light through small elliptical apertures," Opt. Express 12, 2631-2648 (2004). [CrossRef] [PubMed]
  17. K. Tanaka and M. Tanaka, "Simulation of confined and enhanced optical near-fields for an I-shaped aperture in a pyramidal structure on a thick metallic screen," J. Appl. Phys. 95, 3765-3771 (2004). [CrossRef]
  18. L. Wang and X. Xu, "High transmission nanoscale bowtie-shaped aperture probe for near-field optical imaging," Appl. Phys. Lett. 90, 261105 (2007). [CrossRef]
  19. F. Chen, A. Itagi, J. A. Bain, D. D. Stancil, and T. E. Schlesinger, L. Stebounova, G. C. Walker, and B. B. Akhremitchev, "Imaging of optical field confinement in ridge waveguides fabricated on very-small-aperture laser," Appl. Phys. Lett. 83, 3245-3247 (2003). [CrossRef]
  20. K. Sendur, W. Challener, and C. Peng "Ridge waveguide as a near field aperture for high density data storage," J. Appl. Phys. 96, 2743-2752 (2004). [CrossRef]
  21. E. X. Jin and X. Xu, "Obtaining super resolution light spot using surface plasmon assisted sharp ridge nanoaperture," Appl. Phys. Lett. 86, 111106 (2005). [CrossRef]
  22. L. Sun and L. Hesselink, "Low-loss subwavelength metal C-aperture waveguide," Opt. Lett. 31, 3606-3608 (2006). [CrossRef] [PubMed]
  23. Y. Chen and J. Fang, "High-transmission hybrid-effect-assisted nanoaperture," Opt. Lett. 31, 655-657 (2006). [CrossRef] [PubMed]
  24. P. Hansen, L. Hesselink, and B. Leen, "Design of a subwavelength bent C-aperture waveguide," Opt. Lett. 32, 1737-1739 (2007). [CrossRef] [PubMed]
  25. S. Hopfer, "The design of ridged waveguides," IRE Trans. Microwave Theory Tech. 3, 20-29 (1955). [CrossRef]
  26. Z. Zhu and T. G. Brown, "Full-vectorial finite-difference analysis of microstructured optical fibers," Opt. Express 10, 853-864 (2002). [PubMed]
  27. S. Guo, F. Wu, S. Albin, H. Tai, and R. Rogowski, "Loss and dispersion analysis of microstructured fibers by finite-difference medthod," Opt. Express 12, 3341-3352 (2004). [CrossRef] [PubMed]
  28. K. S. Yee, "Numerical solution of initial boundary value problem involving Maxwell's equations in isotropic media," IEEE Trans. Antennas Propag. 14, 302-307 (1966). [CrossRef]
  29. K. S. Kunz and R. J. Luebbers, The Finite Difference Time Domain Method for Electromagnetics (CRC, Boca Raton, FL, 1993).
  30. S. D. Gedney, "An anisotropic perfectly matched layer-absorbing medium for the truncation of FDTD lattices," IEEE Trans. Antennas and Propag. 44, 1630-1639 (1996). [CrossRef]
  31. R. Lehoucq, K. Maschhoff, D. Sorensen, and C. Yang, ARPACK software, http://www.caam.rice.edu/software/ARPACK/.
  32. E. D. Palik, Handbook of Optical Constants of Solids (Academic Press, Orlando, FL, 1985).
  33. E. Wolf, "Electromagnetic diffraction in optical system I: an integral representation of the image field in an aplanatic system," Proc. R. Soc. London Ser. A 253, 349-357 (1959). [CrossRef]
  34. B. Richards and E. Wolf, "Electromagnetic diffraction in optical system II: structure of the image field in an aplanatic system," Proc. R. Soc. London Ser. A 253, 358-379 (1959). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited