OSA's Digital Library

Optics Express

Optics Express

  • Editor: Martijn de Sterke
  • Vol. 16, Iss. 20 — Sep. 29, 2008
  • pp: 16064–16078

Dynamic functional and mechanical response of breast tissue to compression

S. A. Carp, J. Selb, Q. Fang, R. Moore, D. B. Kopans, E. Rafferty, and D. A. Boas  »View Author Affiliations

Optics Express, Vol. 16, Issue 20, pp. 16064-16078 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (271 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Physiological tissue dynamics following breast compression offer new contrast mechanisms for evaluating breast health and disease with near infrared spectroscopy. We monitored the total hemoglobin concentration and hemoglobin oxygen saturation in 28 healthy female volunteers subject to repeated fractional mammographic compression. The compression induces a reduction in blood flow, in turn causing a reduction in hemoglobin oxygen saturation. At the same time, a two phase tissue viscoelastic relaxation results in a reduction and redistribution of pressure within the tissue and correspondingly modulates the tissue total hemoglobin concentration and oxygen saturation. We observed a strong correlation between the relaxing pressure and changes in the total hemoglobin concentration bearing evidence of the involvement of different vascular compartments. Consequently, we have developed a model that enables us to disentangle these effects and obtain robust estimates of the tissue oxygen consumption and blood flow. We obtain estimates of 1.9±1.3 µmol/100mL/min for OC and 2.8±1.7 mL/100mL/min for blood flow, consistent with other published values.

© 2008 Optical Society of America

OCIS Codes
(170.3880) Medical optics and biotechnology : Medical and biological imaging
(170.6280) Medical optics and biotechnology : Spectroscopy, fluorescence and luminescence
(170.2655) Medical optics and biotechnology : Functional monitoring and imaging
(170.6935) Medical optics and biotechnology : Tissue characterization

ToC Category:
Medical Optics and Biotechnology

Original Manuscript: June 6, 2008
Revised Manuscript: July 23, 2008
Manuscript Accepted: August 8, 2008
Published: September 25, 2008

Virtual Issues
Vol. 3, Iss. 11 Virtual Journal for Biomedical Optics

S. A. Carp, J. Selb, Q. Fang, R. Moore, D. B. Kopans, E. Rafferty, and D. A. Boas, "Dynamic functional and mechanical response of breast tissue to compression," Opt. Express 16, 16064-16078 (2008)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. H. Rinneberg, D. Grosenick, K. T. Moesta, H. Wabnitz, J. Mucke, G. Wubbeler, R. Macdonald, and P. Schlag, "Detection and characterization of breast tumours by time-domain scanning optical mammography," Opto-Electron. Rev. 16, 147-162 (2008). [CrossRef]
  2. A. Cerussi, N. Shah, D. Hsiang, A. Durkin, J. Butler, and B. J. Tromberg, "In vivo absorption, scattering, and physiologic properties of 58 malignant breast tumors determined by broadband diffuse optical spectroscopy," J. Biomed. Opt. 11, 044005 (2006). [CrossRef] [PubMed]
  3. B. Chance, S. Nioka, J. Zhang, E. Conant, E. Hwang, S. Briest, S. Orel, M. D. Schnall, and B. Czerniecki, "Breast Cancer detection based on incremental Biochemical and Physiological properties of breast cancers: A six-year, two-site study 1," Acad. Radiol. 12, 925-933 (2005). [CrossRef] [PubMed]
  4. S. Srinivasan, B. W. Pogue, B. Brooksby, S. D. Jiang, H. Dehghani, C. Kogel, W. A. Wells, S. P. Poplack, and K. D. Paulsen, "Near-infrared characterization of breast tumors in vivo using spectrally-constrained reconstruction," Technol. Cancer Res. Treat. 4, 513-526 (2005). [PubMed]
  5. R. Choe, A. Corlu, K. Lee, T. Durduran, S. D. Konecky, M. Grosicka-Koptyra, S. R. Arridge, B. J. Czerniecki, D. L. Fraker, A. DeMichele, B. Chance, M. A. Rosen, and A. G. Yodh, "Diffuse optical tomography of breast cancer during neoadjuvant chemotherapy: A case study with comparison to MRI," Med. Phys. 32, 1128-1139 (2005). [CrossRef] [PubMed]
  6. V. Ntziachristos, A. G. Yodh, M. Schnall, and B. Chance, "Concurrent MRI and diffuse optical tomography of breast after indocyanine green enhancement," PNAS 97, 2767-2772 (2000). [CrossRef] [PubMed]
  7. V. Ntziachristos, A. G. Yodh, M. D. Schnall, and B. Chance, "MRI-guided diffuse optical spectroscopy of malignant and benign breast lesions," Neoplasia 4, 347-354 (2002). [CrossRef] [PubMed]
  8. A. Li, E. L. Miller, M. E. Kilmer, T. J. Brukilacchio, T. Chaves, J. Stott, Q. Zhang, T. Wu, M. Chorlton, R. H. Moore, D. B. Kopans, and D. A. Boas, "Tomographic optical breast imaging guided by three-dimensional mammography," Appl. Opt. 42, 5181-5190 (2003). [CrossRef] [PubMed]
  9. Q. Zhang, T. Brukilacchio, A. Li, J. Stott, T. Chaves, T. Wu, M. Chorlton, E. Rafferty, R. Moore, D. Kopans, and D. Boas, "Coregistered tomographic x-ray and optical breast imaging: initial results," J. Biomed. Opt.  10, 024,033 (2005). [CrossRef] [PubMed]
  10. C. Schmitz, D. Klemer, R. Hardin, M. Katz, P. Yaling, H. Graber, M. Levin, R. Levina, N. Franco, W. Solomon, and R. Barbour, "Design and implementation of dynamic near-infrared optical tomographic imaging instrumentation for simultaneous dual-breast measurements," Appl. Opt. 44, 2140-2153 (2005). [CrossRef] [PubMed]
  11. R. Barbour, H. Graber, Y. Pei, S. Zhong, and C. Schmitz, "Optical tomographic imaging of dynamic features of dense-scattering media," J. Opt. Soc. Am. A 18, 3018-3036 (2001). [CrossRef]
  12. J. W. Chang, H. L. Graber, P. C. Koo, R. Aronson, S. L. S. Barbour, and R. L. Barbour, "Optical imaging of anatomical maps derived from magnetic resonance images using time-independent optical sources," IEEE Trans. Med. Imaging 16, 68-77 (1997). [CrossRef] [PubMed]
  13. C. Q. Li, H. Z. Zhao, B. Anderson, and H. B. Jiang, "Multispectral breast imaging using a ten-wavelength, 64X64 source/detector channels silicon photodiode-based diffuse optical tomography system," Med. Phys. 33, 627-636 (2006). [CrossRef] [PubMed]
  14. X. Intes, S. Djeziri, Z. Ichalalene, N. Mincu, Y. Wang, P. St-Jean, F. Lesage, D. Hall, D. Boas, M. Polyzos, D. Fleiszer, and B. Mesurolle, "Time-domain optical mammography SoftScan: Initial results," Acad. Radiol. 12, 934-947 (2005). [CrossRef] [PubMed]
  15. A. Cerussi, D. Hsiang, N. Shah, R. Mehta, A. Durkin, J. Butler, and B. J. Tromberg, "Predicting response to breast cancer neoadjuvant chemotherapy using diffuse optical spectroscopy," PNAS 104, 4014-4019 (2007). [CrossRef] [PubMed]
  16. N. Shah, J. Gibbs, D. Wolverton, A. Cerussi, N. Hylton, and B. J. Tromberg, "Combined diffuse optical spectroscopy and contrast-enhanced magnetic resonance imaging for monitoring breast cancer neoadjuvant chemotherapy: a case study," J. Biomed. Opt. 10, 051503 (2005). [CrossRef] [PubMed]
  17. A. P. Gibson, T. Austin, N. L. Everdell, M. Schweiger, S. R. Arridge, J. H. Meek, J. S. Wyatt, D. T. Delpy, and J. C. Hebden, "Three-dimensional whole-head optical passive motor evoked responses in the tomography of neonate," Neuroimage 30, 521-528 (2006). [CrossRef]
  18. N. L. Everdell, A. P. Gibson, I. D. C. Tullis, T. Vaithianathan, J. C. Hebden, and D. T. Delpy, "A frequency multiplexed near-infrared topography system for imaging functional activation in the brain," Rev. Sci. Instrum. 76, 093705 (2005). [CrossRef]
  19. A. Y. Bluestone, G. Abdoulaev, C. H. Schmitz, R. L. Barbour, and A. H. Hielscher, "Three-dimensional optical tomography of hemodynamics in the human head," Opt. Express 9, 272-286 (2001). [CrossRef] [PubMed]
  20. T. J. Huppert, R. D. Hoge, A. M. Dale, M. A. Franceschini, and D. A. Boas, "Quantitative spatial comparison of diffuse optical imaging with blood oxygen level-dependent and arterial spin labeling-based functional magnetic resonance imaging," J. Biomed. Opt. 11, 064018 (2006). [CrossRef] [PubMed]
  21. M. A. Franceschini, D. K. Joseph, T. J. Huppert, S. G. Diamond, and D. A. Boas, "Diffuse optical imaging of the whole head," J. Biomed. Opt. 11, 054007 (2006). [CrossRef] [PubMed]
  22. C. H. Schmitz, M. Locker, J. M. Lasker, A. H. Hielscher, and R. L. Barbour, "Instrumentation for fast functional optical tomography," Rev. Sci. Instrum.  73, 429-439, Part 1, (2002). [CrossRef]
  23. S. D. Jiang, B. W. Pogue, K. D. Paulsen, C. Kogel, and S. P. Poplack, "In vivo near-infrared spectral detection of pressure-induced changes in breast tissue," Opt. Lett. 28, 1212-1214 (2003). [CrossRef]
  24. S. Carp, T. Kauffman, Q. Fang, E. Rafferty, R. Moore, D. Kopans, and D. Boas, "Compression induced changes in the physiological state of the breast as observed through frequency domain photon migration measurements," J. Biomed. Opt.  11, 064,016 (2006). [CrossRef]
  25. R. X. Xu, D. C. Young, J. J. Mao, and S. P. Povoski, "A prospective pilot clinical trial evaluating the utility of a dynamic near-infrared imaging device for characterizing suspicious breast lesions," Breast Cancer Res. 9, R88 (2007). [CrossRef] [PubMed]
  26. R. P. Beaney, T. Jones, A. A. Lammertsma, C. G. McKenzie, and K. E. Halnan, "Positron Emission Tomography for in-vivo measurement of regional blood-flow, oxygen utilization, and blood-volume in patients with breastcarcinoma," Lancet 323, 131-134 (1984). [CrossRef]
  27. C. Wilson, A. A. Lammertsma, C. G. McKenzie, K. Sikora, and T. Jones, "Measurements of blood-flow and exchanging water space in breast-tumors using positron emission tomography - a rapid and noninvasive dynamic method," Cancer Research 52, 1592-1597 (1992). [PubMed]
  28. T. Durduran, R. Choe, G. Q. Yu, C. Zhou, J. C. Tchou, B. J. Czerniecki, and A. G. Yodh, "Diffuse optical measurement of blood flow in breast tumors," Opt. Lett. 30, 2915-2917 (2005). [CrossRef] [PubMed]
  29. M. Insana, C. Pellot-Barakat, M. Sridhar, and K. Lindfors, "Viscoelastic Imaging of Breast Tumor Microenvi ronment with Ultrasound," J. Mammary Gland Biology and Neoplasia 9, 393-404 (2004). [CrossRef]
  30. M. Sridhar and M. F. Insana, "Ultrasonic measurements of breast viscoelasticity," Med. Phys. 34, 4757-4767 (2007). [CrossRef]
  31. A. Thomas, T. Fischer, H. Frey, R. Ohlinger, S. Grunwald, J. Blohmer, K. Winzer, S. Weber, G. Kristiansen, B. Ebert, and S. K¨ummel, "Real-time elastography - an advanced method of ultrasound: first results in 108 patients with breast lesions," Ultrasound Obstet. Gynecol. 28, 335-340 (2006). [CrossRef] [PubMed]
  32. T. Xydeas, K. Siegmann, R. Sinkus, U. Krainick-Strobel, S. Miller, and C. Claussen, "Magnetic resonance elastography of the breast - Correlation of signal intensity data with viscoelastic properties," Invest. Radiol. 40, 412-420 (2005). [CrossRef] [PubMed]
  33. S. Fantini, M. Franceschini, J. Fishkin, B. Barbieri, and E. Gratton, "Quantitative determination of the absorption spectra of chromophores in scattering media: a light-emitting-diode based technique," Appl. Opt. 33, 5204-5213 (1994). [CrossRef] [PubMed]
  34. S. Fantini, M. Franceschini, and E. Gratton, "Semi-infinite-geometry boundary problem for light migration in highly scattering media: a frequency-domain study in the diffusion approximation," J. Opt. Soc. Am. B 11, 2128-2138 (1994). [CrossRef]
  35. N. Shah, A. E. Cerussi, D. Jakubowski, D. Hsiang, J. Butler, and B. J. Tromberg, "The role of diffuse optical spectroscopy in the clinical management of breast cancer," Dis. Markers 19, 95-105 (2003).
  36. H. Woodard and D. White, "The composition of body tissues," Br. J. Radiol. 59, 1209-1219 (1986). [CrossRef] [PubMed]
  37. D. White, H. Woodard, and S. Hammond, "Average soft-tissue and bone models for use in radiation dosimetry," Br. J. Radiol. 60, 907-913 (1987). [CrossRef] [PubMed]
  38. H. Y. An and W. L. Lin, "Cerebral venous and arterial blood volumes can be estimated separately in humans using magnetic resonance imaging," Magn. Reson. Med. 48, 583-588 (2002). [CrossRef] [PubMed]
  39. T. Q. Duong and S. G. Kim, "In vivo MR measurements of regional arterial and venous blood volume fractions in intact rat brain," Magn. Reson. Med. 43, 393-402 (2000). [CrossRef] [PubMed]
  40. R. Berkow, M. Beers, R. Bogin, and A. Fletcher, The Merck Manual of Medical Information (Home Edition), "Common Medical Tests," (Merck Research Laboratories, Whitehouse Station, New Jersey, 1997) Chap. A. III, pp. 1375-1376.
  41. C. Desjardins and B. Duling, "Microvessel hematocrit: measurement and implications for capillary oxygen transport," Am. J. Physiol. (Heart and Circulatory Physiology) 252, H494-H503 (1987).
  42. F. S. Azar, D. N. Metaxas, and M. D. Schnall, "A deformable finite element model of the breast for predicting mechanical deformations under external perturbations," Acad. Radiol. 8, 965-975 (2001). [CrossRef] [PubMed]
  43. T. Varghese, J. Ophir, and T. A. Krouskop, "Nonlinear stress-strain relationships in tissue and their effect on the contrast-to-noise ratio in elastograms," Ultrasound Med. Biol. 26, 839-851 (2000). [CrossRef] [PubMed]
  44. T. J. Huppert, M. S. Allen, H. Benav, P. B. Jones, and D. A. Boas, "A multicompartment vascular model for inferring baseline and functional changes in cerebral oxygen metabolism and arterial dilation," J. Cereb. Blood Flow Metab. 27, 1262-1279 (2007). [CrossRef] [PubMed]
  45. F. Azar, D. Metaxas, and M. Schnall, "Methods for modeling and predicting mechanical deformaions of the breast under external perturbations," Med. Image Anal. 6, 1-27 (2002). [CrossRef] [PubMed]
  46. R. Leiderman, P. Barbone, A. Oberai, and J. Bamber, "Coupling between elastic strain and interstitial fluid flow: ramification for poroelastic imaging," Phys. Med. Biol. 51, 6291-6313 (2006). [CrossRef] [PubMed]
  47. L. Spinelli, A. Torricelli, A. Pifferi, P. Taroni, G. M. Danesini, and R. Cubeddu, "Bulk optical properties and tissue components in the female breast from multiwavelength time-resolved optical mammography," J. Biomed. Opt. 9, 1137-1142 (2004). [CrossRef] [PubMed]
  48. P. Taroni, D. Comelli, A. Pifferi, A. Torricelli, and R. Cubeddu, "Absorption of collagen: effects on the estimate of breast composition and related diagnostic implications," J. Biomed. Opt.  12, Art. No. 014021 (2007). [CrossRef] [PubMed]
  49. D. A. Mankoff, L. K. Dunnwald, J. R. Gralow, G. K. Ellis, A. Charlop, T. J. Lawton, E. K. Schubert, J. Tseng, R. B. Livingston, "Blood Flow and Metabolism in Locally Advanced Breast Cancer: Relationship to Response to Therapy," J. Nucl. Med. 43, 500-509 (2002). [PubMed]
  50. J. P. Delille, P. J. Slanetz, E. D. Yeh, D. B. Kopans, L. Garrido, "Breast Cancer: Regional Blood Flow and Blood Volume Measured with Magnetic Susceptibility-based MR Imaging-Initial Results," Radiology 223, 558-565 (2002). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.
Fig. 4.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited