OSA's Digital Library

Optics Express

Optics Express

  • Editor: Martijn de Sterke
  • Vol. 16, Iss. 20 — Sep. 29, 2008
  • pp: 16124–16137

Impact of XPM and FWM on the digital implementation of impairment compensation for WDM transmission using backward propagation

Eduardo Mateo, Likai Zhu, and Guifang Li  »View Author Affiliations

Optics Express, Vol. 16, Issue 20, pp. 16124-16137 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (607 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The impact of cross-phase modulation (XPM) and four-wave mixing (FWM) on electronic impairment compensation via backward propagation is analyzed. XPM and XPM+FWM compensation are compared by solving, respectively, the backward coupled Nonlinear Schrödinger Equation (NLSE) system and the total-field NLSE. The DSP implementations as well as the computational requirements are evaluated for each post-compensation system. A 12×100 Gb/s 16-QAM transmission system has been used to evaluate the efficiency of both approaches. The results show that XPM post-compensation removes most of the relevant source of nonlinear distortion. While DSP implementation of the total-field NLSE can ultimately lead to more precise compensation, DSP implementation using the coupled NLSE system can maintain high accuracy with better computation efficiency and low system latency.

© 2008 Optical Society of America

OCIS Codes
(060.1660) Fiber optics and optical communications : Coherent communications
(060.2330) Fiber optics and optical communications : Fiber optics communications
(190.4370) Nonlinear optics : Nonlinear optics, fibers

ToC Category:
Fiber Optics and Optical Communications

Original Manuscript: May 30, 2008
Revised Manuscript: June 24, 2008
Manuscript Accepted: June 25, 2008
Published: September 26, 2008

Eduardo Mateo, Likai Zhu, and Guifang Li, "Impact of XPM and FWM on the digital implementation of impairment compensation for WDM transmission using backward propagation," Opt. Express 16, 16124-16137 (2008)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. Marcuse, A. R. Chraplyvy and R. W. Tkach, "Effect of fiber nonlinearity on long-distance transmission," J. Lightwave Technol. 9,121-129 (1991). [CrossRef]
  2. S. Watanabe and M. Shirasaki, "Exact compensation for both chromatic dispersion and Kerr effect in a transmission fiber using optical phase conjugation," J. Lightwave Technol. 14, 243-249 (1996). [CrossRef]
  3. C. Kurtzke, "Suppression of fiber nonlinearities by appropriate dispersion management," J. Lightwave Technol. 5, 1250-1253 (1993).
  4. J. Leibrich, C. Wree and W. Rosenkranz, "CF-RZ-DPSK for suppression of XPM on dispersion-managed longhaul optical WDMtransmission on standard single-mode fiber," IEEE Photon. Technol. Lett. 14, 155-157 (2002). [CrossRef]
  5. S. L. Woodward, S. Huang, M.D. Feuer, and M. Boroditsky, "Demonstration of an electronic dispersion compensation in a 100-km 10-Gb/s ring network," IEEE Photon. Technol. Lett. 15, 867-869 (2003). [CrossRef]
  6. K. Roberts, C. Li, L. Strawczynski, M. OSullivan, and I. Hardcatle, "Electronic precompensation of optical nonlinearity," IEEE Photon. Technol. Lett. 18, 403-405 (2006). [CrossRef]
  7. E. Yamazaki, F. Inuzuka, K. Yonenaga, A. Takada, and M. Koga, "Compensation of interchannel crosstalk induced by optical fiber nonlinearity in carrier phase-locked WDM system," IEEE Photon. Technol. Lett. 19, 9-11 (2007). [CrossRef]
  8. X. Li, X. Chen, G. Goldfarb, E. Mateo, I. Kim, F. Yaman, and G. Li, "Electronic post-compensation of WDM transmission impairments using coherent detection and digital signal processing," Opt. Express 16, 880-889 (2008). [CrossRef] [PubMed]
  9. G. P. Agrawal, Nonlinear fiber optics, (Academic Press, 2007).
  10. J. Leibrich and W. Rosenkranz, "Efficient numerical simulation of multichannel WDM transmission systems limited by XPM," IEEE Photon. Technol. Lett. 15, 395-397 (2003). [CrossRef]
  11. O. V. Sinkin, Holzlohner, J. Zweck, and C. Menyuk," "Optimization of the split-step Fourier method in modeling optical-fiber communications system," J. Lightwave Technol. 21, 61-68 (2003). [CrossRef]
  12. T. Schneider, Nonlinear optics in telecommunications, (Springer, 2004).
  13. G. Bosco, A. Carena, V. Curri, R. Gaudino, P. Poggiolini, and S. Benedetto, "Suppression of spurious tones induced by the split-step method in fiber systems simulation," IEEE Photon. Technol. Lett. 12, 489-397 (2000). [CrossRef]
  14. G. Goldfarb, G. Li and M. G. Taylor, "Orthogonal wavelength-division multiplexing using coherent detection," IEEE Photon. Technol. Lett. 19, 2015-2017 (2007). [CrossRef]
  15. X. Liu and D. A. Fishman, "A fast and reliable algorithm for electronic pre-equalization of SPM and chromatic dispersion," in OFC 1996, paper OThD4.
  16. A. J. Lowery, L. B. Du, and J. Armstrong, "Performance of optical OFDM in ultralong-haul WDM lightwave systems," J. Lightwave Technol. 25, 131-138 (2007). [CrossRef]
  17. M. Shtaif, M. Eiselt, and L. D. Garret, "Cross-phase modulation distortion measurements in multispan WDM systems," IEEE Photon. Technol. Lett. 12, 88-90 (2000). [CrossRef]
  18. P. P. Mitra and J. B. Stark, "Nonlinear limits to the information capacity of optical fibre communications," Nature 411, 1027-1030 (2001). [CrossRef] [PubMed]
  19. J. M. Kahn and K. Ho, "Spectral efficiency limits and modulation/detection techniques for DWDM systems," IEEE J. Sel. Top. Quantum Electron. 10, 259-272 (2004). [CrossRef]
  20. J. Wang and K. Petermann, "Small signal analysis for dispersive optical fiber communication systems," J. Lightwave Technol. 10, 96-100 (1992). [CrossRef]
  21. T. Yu, W. M. Reimer, V. S. Grigoryan, and C. R. Menyuk, "A mean field approach for simulating wavelengthdivision multiplexed systems," IEEE Photon. Technol. Lett. 12, 443-445 (2000). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited