OSA's Digital Library

Optics Express

Optics Express

  • Editor: Martijn de Sterke
  • Vol. 16, Iss. 20 — Sep. 29, 2008
  • pp: 16202–16208

Single-mode waveguide optical isolator based on direction-dependent cutoff frequency

Lingling Tang, Samuel M. Drezdzon, and Tomoyuki Yoshie  »View Author Affiliations

Optics Express, Vol. 16, Issue 20, pp. 16202-16208 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (302 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A single-mode-waveguide optical isolator based on propagation direction dependent cut-off frequency is proposed. The isolation bandwidth is the difference between the cut-off frequencies of the lowest forward and backward propagating modes. Perturbation theory is used for analyzing the correlation between the material distribution and the bandwidth. The mode profile determines an appropriate distribution of non-reciprocal materials.

© 2008 Optical Society of America

OCIS Codes
(130.3120) Integrated optics : Integrated optics devices
(230.3240) Optical devices : Isolators

ToC Category:
Integrated Optics

Original Manuscript: July 11, 2008
Revised Manuscript: September 15, 2008
Manuscript Accepted: September 22, 2008
Published: September 26, 2008

Lingling Tang, Samuel M. Drezdzon, and Tomoyuki Yoshie, "Single-mode waveguide optical isolator based on direction-dependent cutoff frequency," Opt. Express 16, 16202-16208 (2008)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. Levy, R. M. Osgood, Jr., H. Hegde, F. J. Cadieu, R. Wolfe, and V. J. Fratello, "Integrated optical isolators with sputter-deposited thin-film magnets," IEEE Photon. Technol. Lett. 8, 903-905 (1996). [CrossRef]
  2. Y. Shoji, I. W. Hsieh, R. M. Osgood, and T. Mizumoto, "Polarization-Independent Magneto-Optical Waveguide Isolator Using TM-Mode Nonreciprocal Phase Shift," J. Lightwave Technol. 25, 3108-3113 (2007). [CrossRef]
  3. J. Fujita, M. Levy, R. M. Osgood, Jr., L. Wilkens, and H. Dotsch, "Waveguide optical isolator based on Mach-Zehnder interferometer," Appl. Phys. Lett. 76, 2158-2160 (2000). [CrossRef]
  4. H. Dotsch, N. Bahlmann, O. Zhuromskyy, M. Hammer, L. Wilkens, R. Gerhardt, and P. Hertel, "Applications of magneto-optical waveguides in integrated optics: review," J. Opt. Soc. Am. B 22, 240-253 (2005). [CrossRef]
  5. N. Kono and M. Koshiba, "Three-dimensional finite element analysis of nonreciprocal phase shifts in magneto-photonic crystal waveguides," Opt. Express 13, 9155-9166 (2005). [CrossRef] [PubMed]
  6. A. Figotin and I. Vitebsky, "Nonreciprocal magnetic photonic crystals," Phys. Rev. E 63, 066609 (2001). [CrossRef]
  7. A. B. Khanikaev, A. V. Baryshev, M. Inoue, A. B. Granovsky, and A. P. Vinogradov, "Two-dimensional magnetophotonic crystal: Exactly solvable model," Phys.Rev. B 72, 035123 (2005). [CrossRef]
  8. Z. Yu, Z. Wang, and S. Fan, "One-way total reflection with one-dimensional magneto-optical photonic crystals," Appl. Phys. Lett. 90, 121133- (2007). [CrossRef]
  9. M. J. Steel, M. Levy, and R. M. Osgood, Jr., "High transmission enhanced Faraday rotation in one-dimensional photonic crystals with defects," IEEE Photon. Technol. Lett. 12, 1171-1173 (2000). [CrossRef]
  10. Z. Yu, G. Veronis, Z. Wang, and S. Fan, "One-Way Electromagnetic Waveguide formed at the Interface between a Plasmonic Metal under a Static Magnetic Field and a Photonic Crystal," Phys. Rev. Lett. 100, 023902 (2008). [CrossRef] [PubMed]
  11. F. D. M. Haldane and S. Raghu, "Possible Realization of Directional Optical Waveguides in Photonic Crystals with Broken Time-Reversal Symmetry," Phys. Rev. Lett. 100, 013904 (2008). [CrossRef] [PubMed]
  12. T. Amemiya, H. Shimizu, M. Yokoyama, P. N. Hai, M. Tanaka, and Y. Nakano, "1.54-um TM-mode waveguide optical isolator based on the nonreciprocal-loss phenomenon: device design to reduce insertion loss," Appl. Opt. 46, 5784-5791 (2007). [CrossRef] [PubMed]
  13. W. Zaets and K. Ando, "Optical Waveguide Isolator Based on Nonreciprocal Loss/Gain of Amplifier Covered by Ferromagnetic Layer," IEEE Photon. Technol. Lett. 11, 1012-1014 (1999). [CrossRef]
  14. S. Johnson and J. Joannopoulos, "Block-iterative frequency-domain methods for Maxwell's equations in a planewave basis," Opt. Express 8, 173-190 (2001). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited