OSA's Digital Library

Optics Express

Optics Express

  • Editor: Martijn de Sterke
  • Vol. 16, Iss. 20 — Sep. 29, 2008
  • pp: 16209–16214

Ion implanted optical channel waveguides in Er3+/MgO co-doped near stoichiometric LiNbO3: a new candidate for active integrated photonic devices operating at 1.5 µm

Feng Chen, Yang Tan, and Airán Ródenas  »View Author Affiliations


Optics Express, Vol. 16, Issue 20, pp. 16209-16214 (2008)
http://dx.doi.org/10.1364/OE.16.016209


View Full Text Article

Enhanced HTML    Acrobat PDF (522 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We report on the fabrication of active optical channel waveguides in Er3+/MgO co-doped near stoichiometric lithium niobate crystals by means of selective low-dose oxygen ion implantation through a specially designed photoresist stripe mask. After post-implantation treatment at 260°C for 1 h, the channel waveguides possess a propagation loss of ~1.7 dB/cm. The micro-luminescence investigation reveals that fluorescence emissions at ~1.5 µm in the waveguides are well preserved with respect to the bulk, exhibiting possible applications for integrated active photonic devices.

© 2008 Optical Society of America

OCIS Codes
(130.3120) Integrated optics : Integrated optics devices
(130.3730) Integrated optics : Lithium niobate
(230.7380) Optical devices : Waveguides, channeled
(250.5230) Optoelectronics : Photoluminescence

ToC Category:
Integrated Optics

History
Original Manuscript: July 16, 2008
Revised Manuscript: August 26, 2008
Manuscript Accepted: September 4, 2008
Published: September 26, 2008

Citation
Feng Chen, Yang Tan, and Airán Ródenas, "Ion implanted optical channel waveguides in Er3+/MgO co-doped near stoichiometric LiNbO3: a new candidate for active integrated photonic devices operating at 1.5 μm," Opt. Express 16, 16209-16214 (2008)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-20-16209


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. Polman, "Erbium-implanted thin film photonic materials," J. Appl. Phys. 82, 1-39 (1997). [CrossRef]
  2. A. J. Kenyon, "Recent developments in rare-earth doped materials for optoelectronics," Prog. Quantum Electron. 26, 225-284 (2002). [CrossRef]
  3. I. Baumann, S. Bosso, R. Brinkmann, R. Corsini, M. Dinand, A. Greiner, K. Schäfer, J. Söchtig, W. Sohler, H. Suche, and R. Wessel, "Er-doped integrated optical devices in LiNbO3," IEEE J. Sel. Top. Quantum Electron. 2, 355-366 (1996). [CrossRef]
  4. W.-S. Yang, H.-Y. Lee, and D.-H. Yoon, "Segregation and laser properties of Er/Mg co-doped LiNbO3 single crystal," J. Cryst. Growth 244, 49-52 (2002). [CrossRef]
  5. B. K. Das, R. Ricken, and W. Sohler, "Integrated optical distributed feedback laser with Ti:Fe:Er:LiNbO3 waveguide," Appl. Phys. Lett. 82, 1515-1517 (2003). [CrossRef]
  6. L. Arizmendi, "Photonic application of lithium niobate crystal," Phys. Stat. Solidi. 2, 253-283 (2004).
  7. H. Hatano, K. Kitamura, and Y. Liu, "Growth and Photorefractive Properties of Stoichiometric LiNbO3 and LiTaO3," in Photorefractive Materials and Their Applications 2: Materials, edited by P. Günter and J.-P. Huignard (Springer, Berlin, 2007) pp. 127-164.
  8. T. Fujiwara, M. Takahashi, M. Ohama, A. J. Ikushima, Y. Furukawa, and K. Kitamura, "Comparison of electro-optic effect between stoichiometric and congruent LiNbO3," Electron. Lett. 35, 499-501 (1999). [CrossRef]
  9. S. M. Lee, T.I. Shin, Y.T. Kim, M. Habu, T. Ito, M. Natori, and D.H. Yoon, "Effect of optical properties of Er2O3 doped stoichiometric LiNbO3 single crystals and co-doped with MgO," Mater. Sci. Eng. B 105, 34-36 (2003). [CrossRef]
  10. J. Kang, M. Lee, S. Lee, K. Lim, K. Somu, S. Takekawa, and K. Kitamura, "1.5 µm emission characteristics of Er3+-doped stoichiometric LiNbO3," Appl. Phys. Lett. 85, 4367-4369 (2004). [CrossRef]
  11. D. L. Zhang and E. Y. B. Pun, "Emission characteristics of near-stoichiometric Er/Yb-codoped LiNbO3 crystals," J. Appl. Phys. 99, 023101 (2006). [CrossRef]
  12. D. Kip, "Photorefractive waveguides in oxide crystals: fabrication, properties, and applications," Appl. Phys. B 67, 131-150 (1998). [CrossRef]
  13. D. Zhang, G. Ding and C. Chen, "Parameters Optimization of Ti-diffused Nd:MgO:LiNbO3 Channel Waveguide Lasers," J. Mod. Opt. 47, 1623 (2000).
  14. G. Lifante, E. Cantelar, J. A. Munoz, R. Nevado, J. A. Sanz-Garcia, F. Cusso, "Zn-diffused LiNbO3:Er3+/Yb3+ as a waveguide laser material," Opt. Mater. 13, 181-186 (1999). [CrossRef]
  15. E. Lallier, J. P. Pocholle, M. Papuchon, M. de Micheli, M. J. Li, Q. He, D. B. Ostrowsky, C. Grezes-Besset, E. Pelletier, "Efficient Nd:MgO:LiNbO3 waveguide laser," Electron. Lett. 26, 927-928, (1990). [CrossRef]
  16. E. Lallier, "Rare-earth-doped glass and LiNbO3 waveguide lasers and optical amplifiers," Appl. Opt. 31, 5276-5282 (1992). [CrossRef] [PubMed]
  17. E. Cantelar, G. Lifante, F. Cusso, M. Domenech, A. Busacca, A. Cino, S. Riva Sanseverino, "Dual-polarization-pump CW laser operation in Nd3+:LiNbO3 channel waveguides fabricated by reverse proton exchange," Opt. Mater. 30, 1039-1043 (2008). [CrossRef]
  18. E. M. Rodríguez, D. Jaque, E. Cantelar, F. Cussó, G. Lifante, A. C. Busacca, A. Cino, and S. R. Sanseverino, "Time resolved confocal luminescence investigations on reverse proton exchange Nd:LiNbO3 channel waveguides," Opt. Express 15, 8805-8811 (2007). [CrossRef] [PubMed]
  19. S. J. Field, D. C. Hanna, D. P. Shepherd, A. C. Tropper, P. J. Chandler, P. D. Townsend and L. Zhang, "Ion-implanted Nd:MgO:LiNbO3 planar waveguide laser," Opt. Lett. 16, 481-483 (1991). [CrossRef] [PubMed]
  20. F. Chen, Y. Tan, L. Wang, Q. M. Lu and H. J. Ma, "Oxygen ion implanted optical channel waveguides in Nd:MgO:LiNbO3: Fabrication, characterization and simulation," J. Phys. D 40, 5824-5827 (2007). [CrossRef]
  21. F. Chen, Y. Tan, D. Jaque, L. Wang, X. L. Wang and K. M. Wang, "Active waveguide in Nd3+:MgO:LiNbO3 crystal produced by low-dose carbon ion implantation," Appl. Phys. Lett. 92, 021110 (2008). [CrossRef]
  22. P. D. Townsend, P. J. Chandler, and L. Zhang, Optical Effects of Ion Implantation (Cambridge Univ. Press, Cambridge, 1994). [CrossRef]
  23. J. Thomas, M. Heinrich, J. Burghoff, S. Nolte, A. Ancona, and A. Tünnermann, "Femtosecond laser-written quasi-phase-matched waveguides in lithium niobate," Appl. Phys. Lett. 91, 151108 (2007). [CrossRef]
  24. A. H. Nejadmalayeri and P. R. Herman, "Rapid thermal annealing in high repetition rate ultrafast laser waveguide writing in lithium niobate," Opt. Express 15, 10842-10854 (2007). [CrossRef] [PubMed]
  25. H. Ilan, A. Gumennik, G. Perepelitsa, A. Israel, and A. J. Agranat, "Construction of an optical wire imprinted in potassium lithium tantalate niobate by He+ implantation," Appl. Phys. Lett. 92, 191101 (2008). [CrossRef]
  26. C. Grivas, D. P. Shepherd, R. W. Eason, L. Laversenne, P. Moretti, C. N. Borca, and M. Pollnau, "Room-temperature continuous-wave operation of Ti:sapphire buried channel-waveguide lasers fabricated via proton implantation," Opt. Lett. 31, 3450-3452 (2006). [CrossRef] [PubMed]
  27. M. Szachowicz, P. Moretti, M.-F. Joubert, M. Couchaud, and B. Ferrand, "Fabrication of H+ implanted channel waveguides in Y3Al5O12:Nd,Tm single crystal buried epitaxial layers for infrared to blue upconversion laser systems," Appl. Phys. Lett. 90, 031113 (2007). [CrossRef]
  28. G. G. Bentini, M. Bianconi, M. Chiarini, L. Correra, C. Sada, P. Mazzoldi, N. Argiolas, M. Bazzan, and R. Guzzi, "Effect of low dose high energy O3+ implantation on refractive index and linear electro-optic properties in X-cut LiNbO3: Planar optical waveguide formation and characterization," J. Appl. Phys. 92, 6477-6483 (2002). [CrossRef]
  29. J. Olivares, A. García-Navarro, G. García, A. Méndez, F. Agulló-López, A. García-Cabañes, M. Carrascosa, and O. Caballero, "Nonlinear optical waveguides generated in lithium niobate by swift-ion irradiation at ultralow fluences," Opt. Lett. 32, 2587-2589 (2007). [CrossRef] [PubMed]
  30. Y. Tan, F. Chen, M. Stepic, V. Shandarov, and D. Kip, "Reconfigurable optical channel waveguides in lithium niobate crystals produced by combination of low-dose O3+ ion implantation and selective white light illumination," Opt. Express 16, 10465-10470 (2008). [CrossRef] [PubMed]
  31. D. L. Zhang, W. H. Wong, and E. Y. B. Pun, "Near-stoichiometric LiNbO3 optical waveguides fabricated using vapor transport equilibration and Ti co-diffusion," Appl. Phys. Lett. 85, 3002-3004 (2004). [CrossRef]
  32. P.J. Chandler and F. L. Lama, "A new approach to the determination of planar waveguide profiles by means of a non-stationary mode index calculation," Optica Acta 33, 127-142 (1986). [CrossRef]
  33. E. Flores-Romero, G. V. Vázquez, H. Márquez, R. Rangel-Rojo, J. Rickards, and R. Trejo-Luna, "Optical channel waveguides by proton and carbon implantation in Nd:YAG crystals," Opt. Express 15, 8513-8520 (2007). [CrossRef] [PubMed]
  34. R. Degl'Innocenti, A. Guarino, G. Poberaj, and P. Günter, "Second harmonic generation of continuous wave ultraviolet light and production of ?-BaB2O4 optical waveguides," Appl. Phys. Lett. 89, 041103 (2006). [CrossRef]
  35. U. Schlarb and K. Betzler, "Refractive indices of lithium niobate as a function of temperature, wavelength and composition: A generalized fit," Phys. Rev. B 48, 15613-15620 (1993). [CrossRef]
  36. Rsoft Design Group, Computer software BeamPROP version 8.0, http://www.rsoftdesign.com.
  37. R. Regener, and W. Sohler, "Loss in low-finesse Ti:LiNbO3 optical waveguide resonators," Appl. Phys. B 36, 143-147 (1985). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited