OSA's Digital Library

Optics Express

Optics Express

  • Editor: Martijn de Sterke
  • Vol. 16, Iss. 20 — Sep. 29, 2008
  • pp: 16255–16264

Wavelength and loss splitting in directly coupled photonic-crystal defect microcavities

Kirill A. Atlasov, Karl Fredrik Karlsson, Alok Rudra, Benjamin Dwir, and Eli Kapon  »View Author Affiliations

Optics Express, Vol. 16, Issue 20, pp. 16255-16264 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (1730 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Coupling between photonic-crystal defect microcavities is observed to result in a splitting not only of the mode wavelength but also of the modal loss. It is discussed that the characteristics of the loss splitting may have an important impact on the optical energy transfer between the coupled resonators. The loss splitting — given by the imaginary part of the coupling strength — is found to arise from the difference in diffractive out-of-plane radiation losses of the symmetric and the antisymmetric modes of the coupled system. An approach to control the splitting via coupling barrier engineering is presented.

© 2008 Optical Society of America

OCIS Codes
(260.2160) Physical optics : Energy transfer
(140.3945) Lasers and laser optics : Microcavities
(230.4555) Optical devices : Coupled resonators
(230.5298) Optical devices : Photonic crystals

ToC Category:
Photonic Crystals

Original Manuscript: August 19, 2008
Revised Manuscript: September 19, 2008
Manuscript Accepted: September 23, 2008
Published: September 26, 2008

Kirill A. Atlasov, Karl F. Karlsson, Alok Rudra, Benjamin Dwir, and Eli Kapon, "Wavelength and loss splitting in directly coupled photonic-crystal defect microcavities," Opt. Express 16, 16255-16264 (2008)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. K. J. Vahala, "Optical microcavities," Nature 424, 839-846 (2003). [CrossRef] [PubMed]
  2. H. Altug, D. Englund, and J. Vuckovic, "Ultrafast photonic crystal nanocavity laser," Nat. Physics 2, 484-488 (2006). [CrossRef]
  3. D. O'Brien, M. D. Settle, T. Karle, A. Michaeli, M. Salib, and T. F. Krauss, "Coupled photonic crystal heterostructure nanocavities," Opt. Express 15, 1228-1233 (2007). [CrossRef] [PubMed]
  4. E. Ozbay, M. Bayindir, I. Bulu, and E. Cubukcu, "Investigation of localized coupled-cavity modes in two-dimensional photonic bandgap structures," IEEE J. Quantum Electron. 38, 837-843 (2002). [CrossRef]
  5. S. Mookherjea, and A. Yariv, "Coupled resonator optical waveguides," IEEE J. Sel. Top. Quantum Electron. 8, 448-456 (2002). [CrossRef]
  6. S. V. Zhukovsky, D. N. Chigrin, A. V. Lavrinenko, and J. Kroha, "Switchable lasing in multimode microcavities," Phys. Rev. Lett. 99, 073902 (2007). [CrossRef] [PubMed]
  7. S. Ishii, A. Nakagawa, and T. Baba, "Modal characteristics and bistability in twin microdisk photonic molecule lasers," IEEE J. Sel. Top. Quantum Electron. 12, 71-77 (2006). [CrossRef]
  8. M. T. Hill, H. J. S. Dorren, T. De Vries, X. J. M. Leijtens, J. H. Den Besten, B. Smalbrugge, Y. S. Oel, H. Binsma, G. D. Khoe, and M. K. Smit, "A fast low-power optical memory based on coupled micro-ring lasers," Nature 432, 206-209 (2004). [CrossRef] [PubMed]
  9. A. Imamoglu, D. D. Awschalom, G. Burkard, D. P. DiVincenzo, D. Loss, M. Sherwin, and A. Small, "Quantum Information Processing Using Quantum Dot Spins and Cavity QED," Phys. Rev. Lett. 83, 4204-4207 (1999). [CrossRef]
  10. K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atatüre, S. Gulde, S. Fält, E. L. Hu, and A. Imamoglu, "Quantum nature of a strongly coupled single quantum dot-cavity system," Nature 445, 896-899 (2007). [CrossRef] [PubMed]
  11. A. D. Greentree, C. Tahan, J. H. Cole, and L. C. L. Hollenberg, "Quantum phase transitions of light," Nat. Physics 2, 856-861 (2006). [CrossRef]
  12. S. V. Boriskina, "Coupling of whispering-gallery modes in size-mismatched microdisk photonic molecules," Opt. Lett. 32, 1557-1559 (2007). [CrossRef] [PubMed]
  13. M. Bayer, T. Gutbrod, J. P. Reithmaier, A. Forchel, T. L. Reinecke, P. A. Knipp, A. A. Dremin, and V. D. Kulakovskii, "Optical modes in photonic molecules," Phys. Rev. Lett. 81, 2582-2585 (1998). [CrossRef]
  14. M. Ghulinyan, C. J. Oton, G. Bonetti, Z. Gaburro, and L. Pavesi, "Free-standing porous silicon single and multiple optical cavities," J. Appl. Phys. 93, 9724-9729 (2003). [CrossRef]
  15. T. Mukaiyama, K. Takeda, H. Miyazaki, Y. Jimba, and M. Kuwata-Gonokami, "Tight-binding photonic molecule modes of resonant bispheres," Phys. Rev. Lett. 82, 4623-4626 (1999). [CrossRef]
  16. B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, and J. P. Laine, "Microring resonator channel dropping filters," J. Lightwave Technol. 15, 998-1005 (1997). [CrossRef]
  17. T. D. Happ, M. Kamp, A. Forchel, A. V. Bazhenov, I. I. Tartakovskii, A. Gorbunov, and V. D. Kulakovskii, "Coupling of point-defect microcavities in two-dimensional photonic-crystal slabs," J. Opt. Soc. Am. B 20, 373-378 (2003). [CrossRef]
  18. S. Ishii, K. Nozaki, and T. Baba, "Photonic molecules in photonic crystals," Jpn. J. Appl. Phys. 45, 6108-6111 (2006). [CrossRef]
  19. D. P. Fussell and M. M. Dignam, "Engineering the quality factors of coupled-cavity modes in photonic crystal slabs," Appl. Phys. Lett. 90, 183121 (2007). [CrossRef]
  20. E. Centeno and D. Felbacq, "Rabi oscillations in bidimensional photonic crystals," Phys. Rev. B 62, 10101-10108 (2000). [CrossRef]
  21. S. Lam, A. R. Chalcraft, D. Szymanski, R. Oulton, B. D. Jones, D. Sanvitto, D. M. Whittaker, M. Fox, M. S. Skolnick, D. O'Brien, T. F. Krauss, H. Liu, P. W. Fry, and M. Hopkinson, "Coupled Resonant Modes of Dual L3-Defect Planar Photonic Crystal Cavities," in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, OSA Technical Digest (CD) (Optical Society of America, 2008), paper QFG6. http://www.opticsinfobase.org/abstract.cfm?URI=QELS-2008-QFG6 [PubMed]
  22. C. Cohen-Tannoudji, B. Diu, and F. Laloë, Quantum Mechanics (Wiley, New York, 1977).
  23. K. A. Atlasov, K. F. Karlsson, E. Deichsel, A. Rudra, B. Dwir, and E. Kapon, "Site-controlled single quantum wire integrated into a photonic-crystal membrane microcavity," Appl. Phys. Lett. 90, 153107 (2007). [CrossRef]
  24. E. Kapon, D. M. Hwang, and R. Bhat, "Stimulated emission in semiconductor quantum wire heterostructures," Phys. Rev. Lett. 63, 430-433 (1989). [CrossRef] [PubMed]
  25. A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech House Publishers, 2005).
  26. W. H. Guo, W. J. Li, and Y. Z. Huang, "Computation of resonant frequencies and quality factors of cavities by FDTD technique and Padé approximation," IEEE Microwave Wirel. Compon. Lett. 11, 223-225 (2001). [CrossRef]
  27. M. Qiu, "Micro-cavities in silicon-on-insulator photonic crystal slabs: Determining resonant frequencies and quality factors accurately," Microwave Opt. Technol. Lett. 45, 381-385 (2005). [CrossRef]
  28. J. M. Raimond and S. Haroche, "Atoms in Cavities," in Confined Electrons and Photons: New Physics and Applications, E. Burstein, and C. Weisbuch, eds. (Plenum Press, New York, 1995). [CrossRef]
  29. K. Srinivasan, and O. Painter, "Momentum space design of high-Q photonic crystal optical cavities," Opt. Express 10, 670-684 (2002). [PubMed]
  30. Y. Akahane, T. Asano, B. S. Song, and S. Noda, "High-Q photonic nanocavity in a two-dimensional photonic crystal," Nature 425, 944-947 (2003). [CrossRef] [PubMed]
  31. The flipping is the interference effect between two wave fronts arising from the coupling cavities. Depending on the PhC-lattice geometrical fill-factor, the flipping period does not correspond to nodes (?A = ?S) at an integer number of holes in the barrier, which may accounts for larger splitting in the case of two-hole barrier.
  32. D. Englund, A. Faraon, B. Zhang, Y. Yamamoto, and J. Vuckovic, "Generation and transfer of single photons on a photonic crystal chip," Opt. Express 15, 5550-5558 (2007). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material

» Media 1: MOV (4034 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited