OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 16, Iss. 21 — Oct. 13, 2008
  • pp: 16314–16325

Characteristics of gap plasmon waveguide with stub structures

Yosuke Matsuzaki, Toshihiro Okamoto, Masanobu Haraguchi, Masuo Fukui, and Masatoshi Nakagaki  »View Author Affiliations


Optics Express, Vol. 16, Issue 21, pp. 16314-16325 (2008)
http://dx.doi.org/10.1364/OE.16.016314


View Full Text Article

Enhanced HTML    Acrobat PDF (584 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We found that metal-dielectric-metal plasmon waveguides with a stub structure, i.e. a branch of the waveguide with a finite length, can function as wavelength selective filters of a submicron size. It was found that the transmission characteristics of such structures depend on the phase relationship between the plasmon wave passing through the stub and the one returning to the waveguide from the stub. We also propose structures with a lossless 90o bend in a plasmon waveguide, utilizing a stub structure. Furthermore, we present a functional stub structure, e.g., a 1:1 demultiplexer and a wavelength selective demultiplexer.

© 2008 Optical Society of America

OCIS Codes
(230.7400) Optical devices : Waveguides, slab
(240.6680) Optics at surfaces : Surface plasmons
(250.5300) Optoelectronics : Photonic integrated circuits
(130.7408) Integrated optics : Wavelength filtering devices

ToC Category:
Optics at Surfaces

History
Original Manuscript: June 9, 2008
Revised Manuscript: August 19, 2008
Manuscript Accepted: August 19, 2008
Published: September 29, 2008

Citation
Yousuke Matsuzaki, Toshihiro Okamoto, Masanobu Haraguchi, Masuo Fukui, and Masatoshi Nakagaki, "Characteristics of gap plasmon waveguide with stub structures," Opt. Express 16, 16314-16325 (2008)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-21-16314


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. W. Nomura, M. Ohtsu, and T. Yatsui, "Nanodot coupler with a surface plasmon polariton condenser for optical far/near-field conversion," Appl. Phys. Lett. 86, 181108 (2005). [CrossRef]
  2. T. Yatsui, M. Kourogi, and M. Ohtsu, "Plasmon waveguide for optical far/near-field conversion," Appl. Phys. Lett. 79, 4583-4585 (2001). [CrossRef]
  3. D. F. P. Pile, T. Ogawa, D. K. Gramotnev, T. Okamoto, M. Haraguchi, M. Fukui, and S. Matsuo, "Theoretical and experimental investigation of strongly localized plasmons on triangular metal wedges for subwavelength waveguiding," Appl. Phys. Lett. 87, 061106 (2005). [CrossRef]
  4. I. V. Novikov and A. A. Maradudin, "Channel polariton," Phys. Rev. B 66, 035403 (2002). [CrossRef]
  5. D. F. P. Pile and D. K. Gramotnev, "Channel plasmon-polariton in a triangular groove on a metal surface," Opt. Lett. 29, 1069-1071 (2004). [CrossRef] [PubMed]
  6. S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laluet, and T. W. Ebbesen, "Channel plasmon subwavelength waveguide components including interferometers and ring resonators," Nature 440, 508-511 (2006). [CrossRef] [PubMed]
  7. D. F. P. Pile, T. Ogawa, D. K. Gramotnev, Y. Matsuzaki, K. C. Vernon, K. Yamaguchi, T. Okamoto, M. Haraguchi, and M. Fukui, "Two-dimensionally localized modes of a nanoscale gap plasmon waveguide," Appl. Phys. Lett. 87, 261114 (2005). [CrossRef]
  8. K. Tanaka and M. Tanaka, "Simulations of nanometric optical circuits based on surface plasmon polariton gap waveguide," Appl. Phys. Lett. 82, 1158-1160 (2003). [CrossRef]
  9. L. Liu, Z. Han, and S. He, "Novel surface plasmon waveguide for high integration," Opt. Exp. 13, 6645-6650, (2005). [CrossRef]
  10. B. Wang and G. P. Wang, "Metal heterowaveguides for nanometric focusing of light," Appl. Phys. Lett. 85, 3599-3601 (2004). [CrossRef]
  11. F. Kusunoki, T. Yotsuya, and J. Takahara, "Confinement and guiding of two-dimensional optical waves by low-refractive-index cores," Opt. Exp. 14, 5651-5656 (2006). [CrossRef]
  12. F. Kusunoki, T. Yotsuya, J. Takahara, and T. Kobayashi, "Propagation properties of guided waves in index-guided two-dimensional optical waveguides," Appl. Phys. Lett. 86, 211101 (2005). [CrossRef]
  13. B. Wang and G. P. Wang, "Plasmon Bragg reflectors and nanocavities on flat metallic surfaces," Appl. Phys. Lett. 87, 013107 (2005). [CrossRef]
  14. B. Wang and G. P. Wang, "Plasmonic waveguide ring resonator at terahertz frequencies," Appl. Phys. Lett. 89, 133106 (2006). [CrossRef]
  15. D. F. P. Pile and D. K. Gramotnev, "Nanoscale Fabry-Pérot Interferometer using channel plasmon-polaritons in triangular metallic grooves," Appl. Phys. Lett. 86, 161101 (2005). [CrossRef]
  16. R. E. Collin, Foundations for Microwave Engineering (McGraw-Hill, 1966).
  17. R. Stoffer, H. J. W. M. Hoekstra, R. M. De Ridder, E. Van Groesen, and F. P. H. Van Beckum, "Numerical studies of 2D photonic crystals: Waveguides, coupling between waveguides and filters," Opt. Quantum Electron. 32, 947-961 (2000). [CrossRef]
  18. K. Ogusu and K. Takayama, "Transmission characteristics of photonic crystal waveguides with stubs and their application to optical filters," Opt. Lett. 32, 2185-2187 (2007). [CrossRef] [PubMed]
  19. P. B. Johnson and R. W. Christy, "Optical Constants of the Noble Metals," Phys. Rev. B 6, 4370-4379 (1972). [CrossRef]
  20. G. Veronis and S. Fan, "Bends and splitters in metal-dielectric-metal subwavelength plasmonic waveguides," Appl. Phys. Lett. 87, 131102 (2005). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited