OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 16, Iss. 21 — Oct. 13, 2008
  • pp: 16343–16351

Surface-induced photorefractivity in twistable nematics: toward the all-optical control of gain

P. Pagliusi, C. Provenzano, and G. Cipparrone  »View Author Affiliations

Optics Express, Vol. 16, Issue 21, pp. 16343-16351 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (208 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We report the first two-beam coupling investigation of the surface-induced photorefractive effect (SIPRE) in optically twistable nematic liquid crystal cell. The unique space-charge field of SIPRE is exploited to achieve optical tuning of the photorefractive gain. A reconfigurable photoaligning substrate is used to adjust the twist angle, which is proved to be a control parameter for the photorefractive gain. The amplitude of the optical modulation increases gradually with the twist. Its phase shift changes from 0° to 90° with the polarization state of the two interfering beams. These results pave the way to the all-optical control of the photorefractive gain.

© 2008 Optical Society of America

OCIS Codes
(050.1950) Diffraction and gratings : Diffraction gratings
(160.5320) Materials : Photorefractive materials
(230.3720) Optical devices : Liquid-crystal devices
(240.6670) Optics at surfaces : Surface photochemistry

ToC Category:
Diffraction and Gratings

Original Manuscript: July 15, 2008
Revised Manuscript: August 29, 2008
Manuscript Accepted: August 31, 2008
Published: September 29, 2008

P. Pagliusi, C. Provenzano, and G. Cipparrone, "Surface-induced photorefractivity in twistable nematics: toward the all-optical control of gain," Opt. Express 16, 16343-16351 (2008)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. P. N. Prasad and B. A. Reinhardt "Is there a role for organic materials chemistry in nonlinear optics and photonics?" Chem. Mater. 2, 660-669 (1990). [CrossRef]
  2. K. Sutter and P. Günter, "Photorefractive gratings in the organic-crystal 2-cyclooctylamino-5-nitropyridine doped with 7,7,8,8-tetracyanoquinodimethane" J. Opt. Soc. Am. B 7, 2274-2278 (1990). [CrossRef]
  3. S. Ducharme, J. C. Scott, R. J. Twieg, and W. E. Moerner, "Observation of the photorefractive effect in a polymer," Phys. Rev. Lett. 66, 1846 (1991). [CrossRef] [PubMed]
  4. I. C. Khoo, B. D. Guenther, M. V. Wood, P. Chen, and M. Y. Shih, "Coherent beam amplification with a photorefractive liquid crystal," Opt. Lett. 22, 1229-1231 (1997). [CrossRef] [PubMed]
  5. O. Ostroverkhova and W. E. Moerner "Organic photorefractives: mechanisms, materials, and applications," Chem. Rev.  104, 3267-3314 (2004) and reference therein. [CrossRef] [PubMed]
  6. P. Yeh, Introduction to Photorefractive Nonlinear Optics (John Wiley & Sons, New York, 1993).
  7. P. Günter, and J. P. Huignard, Photorefractive Materials and Their Applications 2 and 3, (Springer, Berlin, 2007), Springer Series in Optical Sciences Vols. 114 and 115.
  8. L. Solymar, D. J. Webb, and A. Grunnet-Jepsen, The Physics and Applications of Photorefractive Materials (Oxford University Press, Oxford, 1996).
  9. C. Besson, J. M. C. Jonathan, A. Villing, G. Pauliat, and G. Rosen "Influence of alternating field frequency on enhanced photorefractive gain in two-beam coupling," Opt. Lett. 14, 1359-1361 (1989). [CrossRef] [PubMed]
  10. S. I. Stepanov and M. P. Petrov "Efficient unstationary holographic recording in photorefractive crystals under an external alternating electric field," Opt. Commun. 53, 292-295 (1985). [CrossRef]
  11. Ph. Refregier, L. Solimar, H. Rajbenbach, and J. P. Huignard, "Two-beam coupling in photorefractive Bi12SiO20 crystals with moving grating: theory and experiments" J. Appl. Phys. 58, 45-57 (1985). [CrossRef]
  12. F. Wang, B. Liu, L. Liu, and L. Xu, "Double two-beam mixing in photorefractive materials," J. Opt. Soc. Am. B 13, 2775-2782 (1996). [CrossRef]
  13. S. Honma, A. Okamoto, and Y. Takayama "Photorefractive duplex two-wave mixing and all-optical deflection switch," J. Opt. Soc. Am. B 18, 974-981 (2001). [CrossRef]
  14. G. P. Wiederrecht, "Photorefractive liquid crystals," Annu. Rev. Mater. Res. 31, 139 (2001). [CrossRef]
  15. X. D. Sun, Y. B. Pei, F. F. Yao, J. L. Zhang, and C. F. Hou "Optical amplification in multilayer photorefractive liquid crystal films," Appl. Phys. Lett.  90, 201115 (2007) and references therein. [CrossRef]
  16. P. G. de Gennes, and J. Prost, The Physics of Liquid Crystals, 2nd edition, (Clarendon Press, Oxford, 1993).
  17. G. P. Wiederrecht, B. A. Yoon, and M. R. Wasielewski, "High photorefractive gain in nematic liquid-crystals doped with electron-donor and acceptor molecules," Science 270, 1794-1797 (1995). [CrossRef]
  18. I. C. Khoo, M. Y. Shih, M. V. Wood, B. D. Guenther, P. H. Chen, F. Simoni, S. S. Slussarenko, O. Francescangeli, and L. Lucchetti, "Dye-doped photorefractive liquid crystals for dynamic and storage holographic grating formation and spatial light modulation," Proc. IEEE 87, 1897-1911 (1999). [CrossRef]
  19. I. C. Khoo, J. Ding, Y. Zhang, K. Chen, and A. Diaz, "Supra-nonlinear photorefractive response of single-walled carbon nanotube- and C-60-doped nematic liquid crystal," Appl. Phys. Lett. 82, 3587-3589 (2003). [CrossRef]
  20. X. D. Sun, F. F. Yao, Y. B. Pei, and J. L. Zhang "Light controlled diffraction gratings in C-60-doped nematic liquid crystals," J. Appl. Phys. 102, 013104 (2007). [CrossRef]
  21. H. Ono and N. Kawatsuki "Orientational holographic grating observed in liquid crystals sandwiched with photoconductive polymer films," Appl. Phys. Lett. 71, 1162-1164 (1997). [CrossRef]
  22. F. Kajzar, S. Bartkiewicz, and A. Miniewicz "Optical amplification with high gain in hybrid-polymer-liquid-crystal structures," Appl. Phys. Lett. 74, 2924-2926 (1999). [CrossRef]
  23. S. Bartkiewicz, K. Matczyszyn, A. Miniewicz, and F. Kajzar, "High gain of light in photoconducting polymer-nematic liquid crystal hybrid structures," Opt. Commun. 187, 257 (2001). [CrossRef]
  24. A. Brignon, I. Bongrand, B. Loiseaux, and J. P. Huignard, "Signal-beam amplification by two-wave mixing in a liquid-crystal light valve," Opt. Lett. 22, 1855-1857 (1997). [CrossRef]
  25. G. Cook, A. V. Glushchenko, V. Reshetnyak, A. T. Griffith, M. A. Saleh, and D. R. Evans, "Nanoparticle doped organic-inorganic hybrid photorefractives," Opt. Express 16, 4015-4022 (2008). [CrossRef] [PubMed]
  26. M. J. Fuller, C. J. Walsh, Y. Y. Zhao, and M. R. Wasielewski, "Hybrid photorefractive material composed of layered conjugated polymer and dye-dope liquid crystal films," Chem. Mater. 14, 952-953 (2002). [CrossRef]
  27. T. Kesti and A. Golemme "Photorefractive nematic liquid crystals with gain of constant sign under alternating voltage," Appl. Phys. Lett. 88, 011917 (2006). [CrossRef]
  28. P. Pagliusi and G. Cipparrone "Optical two-beam coupling for a surface-induced photorefractive effect in undoped liquid crystals," Opt. Lett. 28, 2369-2371 (2003) and references therein. [CrossRef] [PubMed]
  29. P. P. Korneychuk, O. G. Tereshchenko, Y. A. Reznikov, V. Y. Reshetnyak, and K. D. Singer, "Hidden surface photorefractive gratings in a nematic-liquid crystal cell in the absence of a deposited alignment layer," J. Opt. Soc. Am. B 23, 1007-1011 (2006). [CrossRef]
  30. J. Merlin, E. Chao, M. Winkler, K. D. Singer, P. Korneychuk, and Y. Reznikov "All-optical switching in a nematic liquid crystal twist cell," Opt. Express 13, 5024-5029 (2005). [CrossRef] [PubMed]
  31. P. Pagliusi and G. Cipparrone "Photorefractive effect due to a photoinduced surface-charge modulation in undoped liquid crystals," Phys. Rev. E 69, 061708 (2004). [CrossRef]
  32. C. Provenzano, P. Pagliusi and G. Cipparrone, "Highly efficient liquid crystal based diffraction grating induced by polarization holograms at the aligning surfaces," Appl. Phys. Lett. 89, 121105 (2006). [CrossRef]
  33. V. Chigrinov, E. Prudnikova, V. Kozenkov, H. Kwok, H. Akiyama, T. Kawara, H. Takada, and H. Takatsu "Synthesis and properties of azo dye aligning layers for liquid crystal cells," Liq. Cryst. 29, 1321-1327 (2002). [CrossRef]
  34. L. M. Blinov, G. Cipparrone, A. Mazzulla, C. Provenzano, S. P. Palto, M. I. Barnik, A. V. Arbuzov, and B. A. Umanskii, "A nematic liquid crystal as an amplifying replica of a holographic polarization grating," Mol. Cryst. Liq. Cryst. 449, 147-160 (2006). [CrossRef]
  35. V. Chigrinov, A. Muravski, H. S. Kwok, H. Takada, H. Akiyama, and H. Takatsu, "Anchoring properties of photoaligned azo-dye materials," Phys. Rev. E 68, 061702 (2003) and references therein. [CrossRef]
  36. V. Chigrinov, S. Pikin, A. Verevochnikov, V. Kozenkov, M. Khazimullin, J. Ho, D. D. Huang, and H. S. Kwok, "Diffusion model of photoaligning in azo-dye layers," Phys. Rev. E 69, 061713 (2004). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited