OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 16, Iss. 21 — Oct. 13, 2008
  • pp: 16352–16363

Superimposed video disambiguation for increased field of view

Roummel F. Marcia, Changsoon Kim, Cihat Eldeniz, Jungsang Kim, David J. Brady, and Rebecca M. Willett  »View Author Affiliations

Optics Express, Vol. 16, Issue 21, pp. 16352-16363 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (2097 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Many infrared optical systems in wide-ranging applications such as surveillance and security frequently require large fields of view (FOVs). Often this necessitates a focal plane array (FPA) with a large number of pixels, which, in general, is very expensive. In a previous paper, we proposed a method for increasing the FOV without increasing the pixel resolution of the FPA by superimposing multiple sub-images within a static scene and disambiguating the observed data to reconstruct the original scene. This technique, in effect, allows each sub-image of the scene to share a single FPA, thereby increasing the FOV without compromising resolution. In this paper, we demonstrate the increase of FOVs in a realistic setting by physically generating a superimposed video from a single scene using an optical system employing a beamsplitter and a movable mirror. Without prior knowledge of the contents of the scene, we are able to disambiguate the two sub-images, successfully capturing both large-scale features and fine details in each sub-image. We improve upon our previous reconstruction approach by allowing each sub-image to have slowly changing components, carefully exploiting correlations between sequential video frames to achieve small mean errors and to reduce run times. We show the effectiveness of this improved approach by reconstructing the constituent images of a surveillance camera video.

© 2008 Optical Society of America

OCIS Codes
(100.2000) Image processing : Digital image processing
(100.7410) Image processing : Wavelets
(110.1758) Imaging systems : Computational imaging
(110.4155) Imaging systems : Multiframe image processing
(110.3010) Imaging systems : Image reconstruction techniques

ToC Category:
Image Processing

Original Manuscript: July 18, 2008
Revised Manuscript: September 11, 2008
Manuscript Accepted: September 22, 2008
Published: September 29, 2008

Roummel F. Marcia, Changsoon Kim, Cihat Eldeniz, Jungsang Kim, David J. Brady, and Rebecca M. Willett, "Superimposed video disambiguation for increased field of view," Opt. Express 16, 16352-16363 (2008)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. Y. Hagiwara, "High-density and high-quality frame transfer CCD imager with very low smear, low dark current, and very high blue sensitivity," IEEE Trans. Electron Devices 43, 2122-2130 (1996). [CrossRef]
  2. H. S. P. Wong, R. T. Chang, E. Crabbe, and P. D. Agnello, "CMOS active pixel image sensors fabricated using a 1.8-V, 0.25-mu m CMOS technology," IEEE Trans. Electron Devices 45, 889-894 (1998). [CrossRef]
  3. S. D. Gunapala, S. V. Bandara, J. K. Liu, C. J. Hill, S. B. Rafol, J. M. Mumolo, J. T. Trinh, M. Z. Tidrow, and P. D. Le Van, "1024 x 1024 pixel mid-wavelength and long-wavelength infrared QWIP focal plane arrays for imaging applications," Semicond. Sci. Technol. 20, 473-480 (2005). [CrossRef]
  4. S. Krishna, D. Forman, S. Annamalai, P. Dowd, P. Varangis, T. Tumolillo, A. Gray, J. Zilko, K. Sun, M. G. Liu, J. Campbell, and D. Carothers, "Demonstration of a 320x256 two-color focal plane array using InAs/InGaAs quantum dots in well detectors," Appl. Phys. Lett. 86, 193,501 (2005). [CrossRef]
  5. R. Szeliski, "Image mosaicing for tele-reality applications," Proc. IEEEWorkshop on Applications of Computer Vision pp. 44-53 (1994).
  6. R. A. Hicks, V. T. Nasis, and T. P. Kurzweg, "Programmable imaging with two-axis micromirrors," Opt. Lett. 32, 1066-1068 (2007). [CrossRef] [PubMed]
  7. S. C. Park, M. K. Park, and M. G. Kang, "Super-resolution image reconstruction: A technical overview," IEEE Signal Process. Mag. 20, 21-36 (2003). [CrossRef]
  8. R. C. Hardie, K. J. Barnard, J. G. Bognar, E. E. Armstrong, and E. A. Watson, "High-resolution image reconstruction from a sequence of rotated and translated frames and its application to an infrared imaging system," Opt. Eng. 37, 247-260 (1998). [CrossRef]
  9. J. C. Gillett, T. M. Stadtmiller, and R. C. Hardie, "Aliasing reduction in staring infrared imagers utilizing subpixel techniques," Opt. Eng. 34, 3130-3137 (1995). [CrossRef]
  10. M. Irani and S. Peleg, "Improving resolution by image registration," CVGIP: Graph. Models Image Process. 53, 231-239 (1991). [CrossRef]
  11. R. F. Marcia, C. Kim, J. Kim, D. Brady, and R. M. Willett, "Fast disambiguation of superimposed images for increased field of view," Accepted to "Proc. IEEE Int. Conf. Image Proc. (ICIP 2008)".
  12. P. D. O'Grady, B. A. Pearlmutter, and S. T. Rickard, "Survey of sparse and non-sparse methods in source separation," Int. J. Imag. Syst. Tech. 15, 18-33 (2005). [CrossRef]
  13. A. M. Bronstein, M. M. Bronstein, M. Zibulevsky, and Y. Y. Zeevi, "Sparse ICA for blind separation of transmitted and reflected images," Int. J. Imag. Syst. Tech. 15, 84-91 (2005). [CrossRef]
  14. E. Be'ery and A. Yeredor, "Blind separation of superimposed shifted images using parameterized joint diagonalization," IEEE Trans. Image Process. 17, 340-353 (2008). [CrossRef] [PubMed]
  15. J. Bobin, J.-L. Starck, J. Fadili, and Y. Moudden, "Morphological Diversity and Source Separation," IEEE Trans. Signal Process. 13, 409-412 (2006). [CrossRef]
  16. S. S. Chen, D. L. Donoho, and M. A. Saunders, "Atomic decomposition by basis pursuit," SIAM J. Sci. Comput.  20, 33-61 (electronic) (1998).
  17. M. A. T. Figueiredo, R. D. Nowak, and S. J. Wright, "Gradient projection for sparse reconstruction: Application to compressed sensing and other inverse problems," IEEE J. Sel. Topics in Signal Processing: Special Issue on Convex Optimization Methods for Signal Processing (To appear). [PubMed]
  18. E. Candés and T. Tao, "Near Optimal Signal Recovery From Random Projections: Universal Encoding Strategies," (2006). To be published in IEEE Transactions on Information Theory. http://www.acm.caltech.edu/~emmanuel/papers/OptimalRecovery.pdf. [CrossRef]
  19. D. L. Donoho and Y. Tsaig, "Fast solution of l1-norm minimization problems when the solution may be sparse," Preprint (2006).
  20. R. Tibshirani, "Regression shrinkage and selection via the lasso," J. Roy. Statist. Soc. Ser. B 58, 267-288 (1996).
  21. R. F. Marcia and R. M. Willett, "Compressive coded aperture video reconstruction," Accepted to "Proc. Sixteenth European Signal Processing Conference (EUSIPCO 2008)".
  22. "Benchmark Data for PETS-ECCV 2004," in Sixth IEEE International Workshop on Performance Evaluation of Tracking and Surveillance (2004). URL http://www-prima.imag.fr/PETS04/caviar\char?? data.html.
  23. M. Duarte, M. Davenport, D. Takhar, J. Laska, T. Sun, K. Kelly, and R. Baraniuk, "Single-pixel imaging via compressive sampling, " IEEE Signal Process. Mag. 25, 83 - 91, March 2008. [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.
Fig. 4.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited