OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 16, Iss. 21 — Oct. 13, 2008
  • pp: 16423–16430

Highly nonlinear silica suspended core fibers

Liang Dong, Brian K. Thomas, and Libin Fu  »View Author Affiliations

Optics Express, Vol. 16, Issue 21, pp. 16423-16430 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (527 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Suspended-core fibers are systematically studied. We show that confinement loss in suspended-core fibers can be effectively reduced by an increase of air-cladding width for even sub-micron core diameters and, therefore, provides a considerable simpler solution than equivalent photonic crystal fibers with a large number of air holes for a wide range of nonlinear applications. We have further demonstrated a suspended-core silica fiber with core diameters of 1.27µm and sub-dB splice loss to Hi1060. Loss at 1.55µm was measured in this fiber to be 0.078dB/m, a record for this small core diameter, limited mainly by scattering loss at the glass and air interface. The combination of high nonlinearity, low splice loss and low transmission loss of the suspended core silica fibers will enable a new class of low loss all-fiber nonlinear devices.

© 2008 Optical Society of America

OCIS Codes
(060.2280) Fiber optics and optical communications : Fiber design and fabrication
(060.4370) Fiber optics and optical communications : Nonlinear optics, fibers
(060.4005) Fiber optics and optical communications : Microstructured fibers

ToC Category:
Fiber Optics and Optical Communications

Original Manuscript: July 7, 2008
Revised Manuscript: September 16, 2008
Manuscript Accepted: September 21, 2008
Published: September 30, 2008

Liang Dong, Brian K. Thomas, and Libin Fu, "Highly nonlinear silica suspended core fibers," Opt. Express 16, 16423-16430 (2008)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. K. Ranka, R. S. Windeler, and A. J. Stentz, "Visible continuum generation in air-silica micro-structured optical fibers with anomalous dispersion at 800nm," Opt. Lett. 25, 25-27 (2000). [CrossRef]
  2. P. St. J. Russell, "Photonic-crystal fibers," J. Lightwave. Technol. 24, 4729-4749 (2006). [CrossRef]
  3. R. R. Alfano and S. L. Shairo, "Emission in the region 4000 to 7000 Ǻ via four-photon coupling I n glass," Phys. Rev. Lett. 24, 592-594 (1970). [CrossRef]
  4. J. M. Dudley, G. Genty, and S. Coen, "Supercontinuum generation in photonic crystal fiber," Rev. Mod. Phy. 78, 1135-1184 (2006). [CrossRef]
  5. K. M. Kiang, K. Frampton, T. M. Monro, R. Moore, J. Tucknott, D. W. Hewak, D. J. Richardson, and H. N. Rutt, "Extruded singlemode non-silica glass holey optical fibres," Electron. Lett. 38, 546-547 (2002). [CrossRef]
  6. V. V. Ravi Kanth Kumar, A. K. George, J. C. Knight, and P. St. J. Russell, "Tellurite photonic crystal fiber," Opt. Express 11, 2641-2645 (2003). [CrossRef]
  7. P. Petropoulos, H. Ebendorff-Heidepriem, V. Finazzi, R. C. Moore, K. Frampton, D. J. Richardson, and T. M. Monro, "Highly nonlinear and anomalously dispersive lead silicate glass holey fibers," Opt. Express 11, 3568-3573 (2003). [CrossRef] [PubMed]
  8. P. Domachuk, N. A. Wolchover, M. Cronin-Golomb, A Wang, A. K. George, C. M. B. Cordeiro, J. C. Knight, and F. G. Omenetto, "Over 4000nm bandwidth of Mid-IR supercontinuum generation in sub-centimeter segments of highly nonlinear tellurite PCFs," Opt. Express 16, 7161-7168 (2008). [CrossRef] [PubMed]
  9. F. G. Omenetto and N. A. Wolchover, M. R. Wehner, M. Ross, A. Efimov, and A. J. Taylor, V. V. R. K. Kumar, A. K. George, J. C. Knight, N. Y. Joly, and P. St. J. Russell, "Spectrally smooth supercontinuum from 350 nm to 3 μm in sub-centimeter lengths of soft-glass photonic crystal fibers," Opt. Express 14, 4929-4934 (2006). [CrossRef]
  10. K. Mukasa, M. N. Petrovich, F. Poletti, A. Webb, J. Hayes, A. van Brakel, R. A. Correa, L. Provost, J. Sahu, P. Petropoulos and D. J. Richardson, "Novel fabrication method of highly nonlinear silica holey fibers," Optical Fiber Communications Conference, paper CMC535, Anaheim, California, March 2006.
  11. P. Yeh and A. Yariv, "Theory of Bragg fiber," J. Opt. Soc. Am. 68, 1196-1201(1978). [CrossRef]
  12. V. Finazzi, T. M. Monro, and D. J. Richardson, "The role of confinement loss in highly nonlinear silica holey fibers," IEEE Photon. Technol. Lett. 15, 1246-1248 (2003). [CrossRef]
  13. T. P White, B. T. Kuhlmey, R. C. McPhedran, D. Maystre, G. Renversez, C. Martin de Sterke and L. C. Botten, "Multipole method for microstructured optical fibers, I. formulation," J. Opt. Soc. Am B 19, 2322-2340 (2002). [CrossRef]
  14. A. G. Ghatak and K. Thyagarajan, Introduction to Fiber Optics, (Cambridge University Press, 1998).
  15. M. E. Lines, W. A. Reed, D. J. DiGiovanni and J. R. Hamblin, "Explanation of anomalous loss in high delta singlemode fibers," Electron. Lett. 35, 1009-1010 (1999). [CrossRef]
  16. I. Hartl, L. B. Fu, B. K. Thomas, L. Dong, M. E. Fermann, J. Kim, F. X. Kärtner and C. Menyuk, "Self-referenced fCEO stabilization of a low noise femtosecond fiber oscillator," Conference on Lasers and Electro-Optics, paper CTuC4, San Jose, CA, May 2008.
  17. L. Fu, B. K. Thomas and L. Dong, "Efficient supercontinuum generation in silica suspended core fibers," submitted to Opt. Express.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited