OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 16, Iss. 21 — Oct. 13, 2008
  • pp: 16442–16451

Rapid and inexpensive fabrication of terahertz electromagnetic bandgap structures

Ziran Wu, J. Kinast, M. E. Gehm, and Hao Xin  »View Author Affiliations

Optics Express, Vol. 16, Issue 21, pp. 16442-16451 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (293 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Modern rapid prototyping technologies are now capable of build resolutions that allow direct fabrication of photonic structures in the GHz and THz frequency regimes. To demonstrate this, we have fabricated several structures with 3D electromagnetic bandgaps in the 100-400 GHz range. Characterization of these structures via THz Time-domain Spectroscopy (THz-TDS) shows very good agreement with simulation, confirming the build accuracy of the approach. This rapid and inexpensive 3-D fabrication method may be very useful for a variety of potential THz applications.

© 2008 Optical Society of America

OCIS Codes
(220.4000) Optical design and fabrication : Microstructure fabrication
(050.5298) Diffraction and gratings : Photonic crystals
(050.6624) Diffraction and gratings : Subwavelength structures
(050.6875) Diffraction and gratings : Three-dimensional fabrication

ToC Category:
Photonic Crystals

Original Manuscript: June 13, 2008
Revised Manuscript: September 27, 2008
Manuscript Accepted: September 28, 2008
Published: October 1, 2008

Ziran Wu, J. Kinast, M. E. Gehm, and Hao Xin, "Rapid and inexpensive fabrication of terahertz electromagnetic bandgap structures," Opt. Express 16, 16442-16451 (2008)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. P. H. Siegel, "Terahertz technology," IEEE Trans. Microwave Theory Tech. 50, 910-928 (2002). [CrossRef]
  2. P. H. Siegel, "Terahertz technology in biology and medicine," IEEE Trans. Microwave Theory Tech. 52, 2438-2447 (2004). [CrossRef]
  3. B. Ferguson and X. C. Zhang "Material for Terahertz science and technology," Nat. Mater. 1, 26-33 (2002). [CrossRef]
  4. P. de Maagt, R. Gonzalo, Y. C. Vardaxoglou, and J.-M. Baracco, "Electromagnetic band gap antennas and components for microwave and submillimeter wave applications," IEEE Trans. Antennas Propag. 51, 2667-2677 (2003). [CrossRef]
  5. E. Yablonovitch, "Inhibited spontaneous emission in solid-state physics and electronics," Phys. Rev. Lett. 58, 2059-2062 (1987). [CrossRef] [PubMed]
  6. H. Xin, Z. Wu, A. Yound, and R. Ziolkowski, "THz thermal radiation enhancement using electromagnetic crystals," IEEE AP-S Intl Symp. Dig. 2249-2252 (2007).
  7. Z. Lu, S. Shi, J. A. Murakowski, G. J. Schneider, C. A. Schuetz, and D. W. Prather, "Experimental demonstration of self-collimation inside a three-dimensional photonic crystal," Phys. Rev. Lett. 96, 173902-173905 (2006). [CrossRef] [PubMed]
  8. B. Martinez, I. Ederra, R. Gonzalo, B. Alderman, L. Azcona, P. G. Huggard, B. D. Hon, A. Hussain, S. R. Andrews, L. Marchand, and P. de Maagt, "Manufacturing tolerance analysis, fabrication, and characterization of 3-D submillimeter-wave electromagnetic-band gap crystals," IEEE Trans. Microwave Theory Tech. 55, 672-681 (2007). [CrossRef]
  9. R. Gonzalo, B. Martinez, C. M. Mann, H. Pellemans, P. H. Bolivar, and P. de Maagt "A low-cost fabrication technique for symmetrical and asymmetrical layer-by-layer photonic crystals at submillimeter-wave frequencies," IEEE Trans. Microwave Theory Tech. 50, 2384-2392 (2002). [CrossRef]
  10. E. �?bay, E. Michel, G. Tuttle, R. Biswas, K. M. Ho, J. Bostak, and D. M. Bloom, "Terahertz spectroscopy of three-dimensional photonic bandgap crystals," Opt. Lett. 10, 1155-1157 (1994).
  11. F. Laermer and A. Urban, "Challenges, developments and applications of silicon deep reactive ion etching," Microelectron. Eng. 67-68, 349-355 (2003). [CrossRef]
  12. G. Kiriakidis and N. Katsarakis, "Fabrication of 2-D and 3-D photonic band-gap crystals in the GHz and THz regions," Mater. Phys. Mech. 1,20-26 (2000).
  13. B. Liu, X. Gong, and W. J. Chappell, "Applications of layer-by-layer polymer stereolithography for three-dimensional high-frequency components," IEEE Trans. Microwave Theory Tech. 52, 2567-2575 (2004). [CrossRef]
  14. K. F. Brakora, J. Halloran, and K. Sarabandi, "Design of 3-D monolithic MMW antennas using ceramic stereolithography," IEEE Trans. Antennas Propag. 55, 790-797 (2007). [CrossRef]
  15. V. K. Varadan, X. Jiang, and V. V. Varadan, Microstereolithography and Other Fabrication Techniques for 3D MEMS (Wiley, Chichester, U.K., 2001).
  16. N. Delhote, D. Baillargeat, S. Verdeyme, M. Thevenot, C. Delage, and C. Chaput, "Large experimental bandpass waveguide in 3D EBG woodpile manufactured by layer-by-layer ceramic stereolithography," in IEEE MTT-S Int. Microwave Symp., (Honolulu, Hawaii, 2007), pp. 1431-1434.
  17. N. Delhote, D. Baillargeat, S. Verdeyme, C. Delage, and C. Chaput, "Ceramic layer-by-layer stereolithography for the manufacturing of 3-D millimeter-wave filters," IEEE Trans. Microwave Theory Tech. 55, 548-554 (2007). [CrossRef]
  18. ObjetTM, http://www.2objet.com/Default.aspx.
  19. High Frequency Structure Simulator, Version 11, Ansoft Corporation, 2007.
  20. Microwave Studio, Computer Simulation Technology, 2006.
  21. Z. Wu, L. Wang, Y. Peng, A. Young, S. Seraphin, and H. Xin, "Terahertz characterization of multi-walled carbon nanotube (MWNT) films," J. Appl. Phys. 103, 094324 1-6 (2008).
  22. K. M. Ho, C. T. Chan, C. M. Soukoulis, C. M., R. Biswas, and M. Sigalas, "Photonic band gaps in three dimensions: new layer-by-layer periodic structures," Solid State Commun. 89, 413-416 (1994). [CrossRef]
  23. S. Y. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz, and J. Bur, "A three-dimensional photonic crystal operating at infrared wavelengths," Nature 394, 251-253 (1998). [CrossRef]
  24. P. U. Jepsen and B. M. Fischer, "Dynamic range in terahertz time-domain transmission and reflection spectroscopy," Opt. Lett. 30, 29-31 (2005). [CrossRef] [PubMed]
  25. S. G. Johnson and J. D. Joannopoulos, "Three-dimensionally periodic dielectric layered structure with omnidirectional photonic band gap," Appl. Phys. Lett. 77, 3490-3492 (2000). [CrossRef]
  26. M. Qi, E. Lidorikis, P. T. Rakich, S. G. Johnson, J. D. Joannopoulos, E. P. Ippen, and H. I. Smith, "A three-dimensional optical photonic crystal with designed point defects," Nature 429, 538-542 (2004). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited