OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 16, Iss. 21 — Oct. 13, 2008
  • pp: 16529–16537

Spectral properties of plasmonic resonator antennas

Edward S. Barnard, Justin S. White, Anu Chandran, and Mark L. Brongersma  »View Author Affiliations


Optics Express, Vol. 16, Issue 21, pp. 16529-16537 (2008)
http://dx.doi.org/10.1364/OE.16.016529


View Full Text Article

Enhanced HTML    Acrobat PDF (486 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A theoretical study of the optical properties of metallic nano-strip antennas is presented. Such strips exhibit retardation-based resonances resulting from the constructive interference of counter propagating short-range surface plasmon-polaritons (SR-SPPs) that reflect from the antenna terminations. A Fabry-Pérot model was formulated that successfully predicts both the peak position and spectral shape of their optical resonances. This model requires knowledge of the SR-SPP reflection amplitude and phase pickup upon reflection from the structure terminations. These quantities were first estimated using an intuitive Fresnel reflection model and then calculated exactly using full-field simulations based on the finite-difference frequency-domain (FDFD) method. With only three dimensionless scaling parameters, the Fabry-Pérot model provides simple design rules for engineering resonant properties of such plasmonic resonator antennas.

© 2008 Optical Society of America

OCIS Codes
(050.2230) Diffraction and gratings : Fabry-Perot
(140.4780) Lasers and laser optics : Optical resonators
(240.6680) Optics at surfaces : Surface plasmons
(260.3910) Physical optics : Metal optics

ToC Category:
Optics at Surfaces

History
Original Manuscript: September 16, 2008
Revised Manuscript: September 26, 2008
Manuscript Accepted: September 28, 2008
Published: October 1, 2008

Citation
Edward S. Barnard, Justin S. White, Anu Chandran, and Mark L. Brongersma, "Spectral properties of plasmonic resonator antennas," Opt. Express 16, 16529-16537 (2008)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-21-16529


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. Lal, S. Link, and N. J. Halas, "Nano-optics from sensing to waveguiding," Nat. Photon. 1, 641-648 (2007). [CrossRef]
  2. N. Engheta, A. Salandrino, and A. Alú, "Circuit elements at optical frequencies: Nanoinductors, nanocapacitors, and nanoresistors," Phys. Rev. Lett. 95, 095504 (2005). [CrossRef] [PubMed]
  3. M. L. Brongersma, "Plasmonics: Engineering optical nanoantennas," Nat. Photon. 2, 270-272 (2008). [CrossRef]
  4. F. Wang and Y. R. Shen, "General properties of local plasmons in metal nanostructures," Phys. Rev. Let. 97, 206806 (2006). [CrossRef]
  5. U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters (Springer, 1995).
  6. H. Xu, E. J. Bjerneld, M. Käll, and L. Börjesson, "Spectroscopy of single hemoglobin molecules by surface enhanced raman scattering," Phys. Rev. Lett. 83, 4357-4360 (1999). [CrossRef]
  7. J. B. Jackson and N. J. Halas, "Surface-enhanced raman scattering on tunable plasmonic nanoparticle substrates," Proc. Nat. Acad. Sci. U.S.A. 101, 17930 - 17935 (2004). [CrossRef]
  8. G. Laurent, N. F�??elidj, S. Truong, J. Aubard, G. Lévi, J. Krenn, A. Hohenau, A. Leitner, and F. Aussenegg, "Imaging surface plasmon of gold nanoparticle arrays by far-field raman scattering," Nano Lett. 5, 253-258 (2005). [CrossRef] [PubMed]
  9. J. Takahara, S. Yamagishi, H. Taki, A. Morimoto, and T. Kobayashi, "Guiding of a one-dimensional optical beam with nanometer diameter." Opt. Lett. 22, 475-7 (1997). [CrossRef] [PubMed]
  10. H. Ditlbacher, A. Hohenau, D. Wagner, U. Kreibig, M. Rogers, F. Hofer, F. R. Aussenegg, and J. R. Krenn, "Silver nanowires as surface plasmon resonators." Phys. Rev. Lett. 95, 257403-4 (2005). [CrossRef] [PubMed]
  11. R. Zia, A. Chandran, and M. L. Brongersma, "Dielectric waveguide model for guided surface polaritons," Opt. Lett. 30, 1473-1475 (2005). [CrossRef] [PubMed]
  12. R. Zia, J. A. Schuller, and M. L. Brongersma, "Near-field characterization of guided polariton propagation and cutoff in surface plasmon waveguides," Phys. Rev. B. 74, 165415 (2006). [CrossRef]
  13. R. Zia, J. A. Schuller, A. Chandran, and M. L. Brongersma, "Plasmonics: the next chip-scale technology," Mater. Today 9, 20-27 (2006).
  14. G. W. Bryant, F. J. García de Abajo, and J. Aizpurua, "Mapping the plasmon resonances of metallic nanoantennas," Nano Lett. 8, 631-636 (2008). [CrossRef] [PubMed]
  15. L. Novotny, "Effective wavelength scaling for optical antennas," Phys. Rev. Lett. 98, 266802 (2007). [CrossRef] [PubMed]
  16. T. Søndergaard and S. I. Bozhevolnyi, "Strip and gap plasmon polariton optical resonators," Phys. Status Solidi B 245, 9-19 (2008). [CrossRef]
  17. C. A. Balanis, Antenna Theory : Analysis and Design (John Wiley, 2005), 3rd ed.
  18. R. K. Mongia and P. Bhartia, "Dielectric resonator antennas �??a review and general design relations for resonant frequency and bandwidth," Int.J. Microwave Millimeter-Wave Eng. 4, 230-247 (1994). [CrossRef]
  19. P. J. Schuck, D. P. Fromm, A. Sundaramurthy, G. S. Kino, and W. E. Moerner, "Improving the mismatch between light and nanoscale objects with gold bowtie nanoantennas," Phys. Rev. Lett. 94, 017402-4 (2005). [CrossRef] [PubMed]
  20. P. Mühlschlegel, H. J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, "Resonant optical antennas," Science 308, 1607-9 (2005). [CrossRef] [PubMed]
  21. G. Della Valle, T. Søndergaard, and S. I. Bozhevolnyi, "Plasmon-polariton nano-strip resonators: from visible to infra-red," Opt. Express 16, 6867-6876 (2008). [CrossRef] [PubMed]
  22. E. N. Economou, "Surface plasmons in thin films," Phys. Rev. 182, 539-554 (1969). [CrossRef]
  23. E. Anemogiannis, E. Glytsis, and T. K. Gaylord, "Determination of guided and leaky modes in lossless and lossy planar multilayer optical waveguides: reflection pole method and wavevector density method," J. Lightwave Technol. 17, 929 (1999). [CrossRef]
  24. R. Gordon, "Vectorial method for calculating the fresnel reflection of surface plasmon polaritons," Phys. Rev. B. 74, 153417 (2006). [CrossRef]
  25. R. Gordon, "Light in a subwavelength slit in a metal: Propagation and reflection," Phys. Rev. B. 73, 153405 (2006). [CrossRef]
  26. T. Søndergaard, J. Beermann, A. Boltasseva, and S. I. Bozhevolnyi, "Slow-plasmon resonant-nanostrip antennas: Analysis and demonstration," Phys. Rev. B. 77, 115420 (2008). [CrossRef]
  27. A. D. Rakiíc, A. B. Djurisi�?, J. M. Elazar, and M. L. Majewski, "Optical properties of metallic films for verticalcavity optoelectronic devices," Appl. Opt. 37, 5271 (1998). [CrossRef]
  28. A. Boltasseva, S. I. Bozhevolnyi, T. Nikolajsen, and K. Leosson, "Compact Bragg gratings for long-range surface plasmon polaritons," J. Lightwave Technol. 24, 912 (2006). [CrossRef]
  29. E. Hecht, Optics (Addison Wesley, 2001), 4th ed.
  30. G. Veronis and S. Fan, "Overview of simulation techniques for plasmonic devices," in Surface Plasmon Nanophotonics, vol. 131, M. L. Brongersma and P. G. Kik, eds. (Springer, 2007), pp. 169-182.
  31. S. I. Bozhevolnyi and T. Søndergaard, "General properties of slow-plasmon resonant nanostructures: nanoantennas and resonators," Opt. Express 15, 10869 (2007). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2. Fig. 3.
 
Fig. 4.
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited