OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 16, Iss. 21 — Oct. 13, 2008
  • pp: 16552–16560

Characterization of FBG sensor interrogation based on a FDML wavelength swept laser

Eun Joo Jung, Chang-Seok Kim, Myung Yung Jeong, Moon Ki Kim, Min Yong Jeon, Woonggyu Jung, and Zhongping Chen  »View Author Affiliations


Optics Express, Vol. 16, Issue 21, pp. 16552-16560 (2008)
http://dx.doi.org/10.1364/OE.16.016552


View Full Text Article

Enhanced HTML    Acrobat PDF (931 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

In this study, we develop an ultra-fast fiber Bragg grating sensor system that is based on the Fourier domain mode-locked (FDML) swept laser. A FDML wavelength swept laser has many advantages compared to the conventional wavelength swept laser source, such as high-speed interrogation, narrow spectral sensitivity, and high phase stability. The newly developed FDML wavelength swept laser shows a superior performance of a high scan rate of 31.3 kHz and a broad scan range of over 70 nm simultaneously. The performance of the grating sensor interrogating system using a FDML wavelength swept laser is characterized in both static and dynamic strain responses.

© 2008 Optical Society of America

OCIS Codes
(050.2770) Diffraction and gratings : Gratings
(060.2310) Fiber optics and optical communications : Fiber optics
(060.2370) Fiber optics and optical communications : Fiber optics sensors
(140.3510) Lasers and laser optics : Lasers, fiber

ToC Category:
Fiber Optics and Optical Communications

History
Original Manuscript: July 15, 2008
Revised Manuscript: August 21, 2008
Manuscript Accepted: September 29, 2008
Published: October 2, 2008

Citation
Eun Joo Jung, Chang-Seok Kim, Myung Yung Jeong, Moon Ki Kim, Min Yong Jeon, Woonggyu Jung, and Zhongping Chen, "Characterization of FBG sensor interrogation based on a FDML wavelength swept laser," Opt. Express 16, 16552-16560 (2008)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-21-16552


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlane, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, "Fiber grating sensors," J. Lightwave Technol. 15, 1442-1463 (1997). [CrossRef]
  2. S. M. Melle, K. Liu, and R. M. Measures, "A Passive Wavelength Demodulation System for Guided-Wave Bragg Grating Sensors," IEEE Photon. Technol. Lett. 4, 1539-1541 (1992). [CrossRef]
  3. A. D. Kersey, T. A. Berkoff, and W. W. Morey, "High-resolution fiber Grating based strain sensor with interferometric wavelength-shift detection," Electron. Lett. 28, 236-238 (1992). [CrossRef]
  4. A. D. Kersey, T. A. Berkoff, and W. W. Morey, "Multiplexed fiber Bragg grating strain-sensor system with a fiber Fabry-Perot wavelength filter," Opt. Lett. 18, 33-39 (1993). [CrossRef]
  5. C. S. Kim, T. H. Lee, Y. S. Yu, Y. G. Han, S. B. Lee, and M. Y. Jeong, "Multi-point interrogation of FBG sensors using cascaded flexible wavelength-division Sagnac loop filters," Opt. Express 14, 8546-8551 (2006). [CrossRef] [PubMed]
  6. S. Chung, J. Kim, B. A. Yu, and B. Lee, "A fiber Bragg grating sensor demodulation technique using a polarization maintaining fiber loop mirror," IEEE Photon. Technol. Lett. 13, 1343-1345 (2001). [CrossRef]
  7. M. Song, S. Yin, and P. B. Ruffin, "Fiber Bragg grating strain sensor demodulation with quadrature sampling of a Mach-Zehnder interferometer," Appl. Opt. 39, 1106-1111 (2000). [CrossRef]
  8. H.-J. Bang, S.-M. Jun, and C.-G. Kim, "Stabilized interrogation and multiplexing techniques for fibre Bragg grating vibration sensors," Meas. Sci. Technol. 16, 813-820 (2005). [CrossRef]
  9. S. H. Yun, D. J. Richardson, and B. Y. Kim, "Interrogation of fiber grating sensor arrays with a wavelength-swept fiber laser," Opt. Lett. 23, 843-845 (1998). [CrossRef]
  10. C.-Y. Ryu, and C.-S. Hong, "Development of fiber Bragg grating sensor system using wavelength-swept fiber laser," Smart Mater. Struct. 11, 468-473 (2002). [CrossRef]
  11. Y. Wang, Y. Cui, and B. Yun, "A Fiber Bragg Grating Sensor System for Simultaneously Static and Dynamic Measurements with a Wavelength-Swept Fiber Laser," IEEE Photon. Technol. Lett. 18, 1539-1541 (2006). [CrossRef]
  12. S.-W. Lee, C.-S. Kim, and B.-M. Kim, "External-line cavity wavelength-swept source at 850 nm for optical coherence tomography," IEEE Photon. Technol. Lett. 19, 176-178 (2007). [CrossRef]
  13. A. Hongo, S. Kojima, and S. Komatsuzaki, "Applications of fiber Bragg grating sensors and high-speed interrogation techniques," Struct. Control Health Monit. 12, 269-282 (2005). [CrossRef]
  14. D. G. Kim, W. Yoo, P. Swinehart, B. Jiang, T. Haber, and A. Mendez, "Development of an FBG-Based Low Temperature Measurement System for Cargo Containment of LNG Tankers," Proc. SPIE 6770, 1-12 (2007).
  15. M. C. Wu, and W. H. Prosser, "Simultaneous Temperature and Strain Sensing for Cryogenic Applications Using Dual-Wavelength Fiber Bragg Gratings," Proc. SPIE 5191, 208-213 (2003). [CrossRef]
  16. C. J. Yeager, C. McGee, M. Maklad, and P. R. Swinehart, "Cryogenic Fiber Optic Temperature Sensors Based on Fiber Bragg Gratings," Advances in cryogenic engineering: Transactions of the Cryogenic Engineering Conference-CEC.AIP Conference Proceedings 823, 267-272 (2006).
  17. P. R. Swinehart, M. Maklad, and S. S. Courts, "Cryogenic Fiber Optic Sensors Based on Fiber Bragg Gratings," CEC-ICMC Conference Proceedings 16-20 (2007).
  18. R. Huber, M. Wojtkowski, and J. G. Fujimoto, "Fourier domain mode locking (FDML): A new laser operating regime and applications for optical coherence tomography," Opt. Express 14, 3225-3237 (2006). [CrossRef] [PubMed]
  19. R. Huber, D. C. Adler, and J. G. Fujimoto, "Buffered Fourier domain mode locking: unidirectional swept laser sources for optical coherence tomography imaging at 370,000 lines/s," Opt. Lett. 31, 2975-2977 (2006). [CrossRef] [PubMed]
  20. D. C. Adler, R. Huber, and J. G. Fujimoto, "Phase-sensitive optical coherence tomography at up to 370,000 lines per second using buffered Fourier domain mode-locked lasers," Opt. Lett. 32, 626-628 (2007). [CrossRef] [PubMed]
  21. M. Y. Jeon, J. Zhang, Q. Wang, and Z. Chen, "High-speed and wide bandwidth Fourier domain mode-locked wavelength swept laser with multiple SOAs," Opt. Express 16, 2547-2554 (2008). [CrossRef] [PubMed]
  22. L. A. Kranendonk, R. Huber, J. G. Fujimoto, and S. T. Sanders, "Wavelength-agile H2O absorption spectrometer for thermometry of general combustion gases," Proc. Combust. Inst.  31, 783-790 (2007). [CrossRef]
  23. S. H. Yun, C. Boudoux, M. C. Pierce, J. F. de Boer, G. J. Tearney, and B. E. Bouma, "Extended-cavity semiconductor wavelength-swept laser for biomedical imaging," IEEE Photon. Technol. Lett. 16, 293-295 (2006). [CrossRef]
  24. R. Huber, M. Wojtkowski, K. Taira, and J. G. Fujimoto, "Amplified, frequency swept lasers for frequency domain reflectometry and OCT imaging: design and scaling principles," Opt. Express 13, 3513-3528 (2005). [CrossRef] [PubMed]
  25. G.  Gagliardi, M.  Salza, P.  Ferraro, and P.  De Natale, "Fiber Bragg-grating strain sensor interrogation using laser radio-frequency modulation," Opt. Express  13, 2377-2384 (2005). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited