OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 16, Iss. 21 — Oct. 13, 2008
  • pp: 16592–16599

Sparse-exposure technique in holographic two-photon polymerization

Hidetomo Takahashi, Satoshi Hasegawa, Akihiro Takita, and Yoshio Hayasaki  »View Author Affiliations

Optics Express, Vol. 16, Issue 21, pp. 16592-16599 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (1888 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Holographic two-photon polymerization is based on a high-speed, low-loss parallel laser irradiation technique inside photosensitive materials using a computer-generated hologram displayed on a liquid crystal spatial light modulator. We demonstrated a sparse exposure technique combining parallel exposure and scanning exposure to improve the fabrication throughput and to achieve simultaneous fabrication of linear structures with different widths. We also demonstrated fabrication of space-variant structures by changing a CGH, as well as parallel fabrication of voxel structures with single femtosecond laser pulse irradiation.

© 2008 Optical Society of America

OCIS Codes
(090.1760) Holography : Computer holography
(090.2890) Holography : Holographic optical elements
(140.7090) Lasers and laser optics : Ultrafast lasers
(220.4000) Optical design and fabrication : Microstructure fabrication
(230.6120) Optical devices : Spatial light modulators
(220.4241) Optical design and fabrication : Nanostructure fabrication

ToC Category:

Original Manuscript: August 1, 2008
Revised Manuscript: September 16, 2008
Manuscript Accepted: September 22, 2008
Published: October 2, 2008

Hidetomo Takahashi, Satoshi Hasegawa, Akihiro Takita, and Yoshio Hayasaki, "Sparse-exposure technique in holographic two-photon polymerization," Opt. Express 16, 16592-16599 (2008)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. S. Maruo, O. Nakamura, and S. Kawata, "Three-dimensional microfabrication with two-photon-absorbed photopolymerization," Opt. Lett. 22, 132-134 (1997). [CrossRef] [PubMed]
  2. H. -B. Sun, S. Matsuo, and H. Misawa, "Three-dimensional photonic crystal structures achieved with two-photon-absorption photopolymerization of resin," Appl. Phys. Lett. 74, 786-788 (1999). [CrossRef]
  3. H. -B. Sun, T. Tanaka, and S. Kawata, "Three-dimensional focal spots related to two-photon excitation," Appl. Phys. Lett. 80, 3673-3675 (2002). [CrossRef]
  4. H. -B. Sun, M. Maeda, K. Takada, J. W. M. Chon, M. Gu, and S. Kawata, "Experimental investigation of single voxels for laser nanofabrication via two-photon photopolymerization," Appl. Phys. Lett. 83, 819-821 (2003). [CrossRef]
  5. J. Serbin, A. Egbert, A. Ostendorf, B. N. Chickov, R. Houbertz, G. Domann, J. Schulz, C. Cronauer, L. Fröhlich, and M. Popall, "Femtosecond laser-induced two-photon polymerization of inorganic-organic hybrid materials for applications in photonics," Opt. Lett. 28, 301-303 (2003). [CrossRef] [PubMed]
  6. V. Mizeikis, K. K. Seet, S. Juodkazis, and H. Misawa, "Three-dimensional woodpile photonic crystal templates for the infrared spectral range," Opt. Lett. 29, 2061-2063 (2004). [CrossRef] [PubMed]
  7. S. H. Park, T. W. Lim, D. -Y. Yang, N. C. Cho, and K. -S. Lee, "Fabrication of a bunch of sub-30-nm nanofibers inside microchannels using photopolymerization via a long exposure technique," Appl. Phys. Lett. 89, 173133 (2006). [CrossRef]
  8. D. Tan, Y. Li, F. Qi, H. Yang, Q. Gong, X. Dong, and X. Duan, "Reduction in feature size of two-photon polymerization using SCR500," Appl. Phys. Lett. 90, 071106 (2007). [CrossRef]
  9. J. -F. Xing, X. -Z. Dong, W. -Q. Chen, X. -M. Duan, N. Takeyasu, T. Tanaka, and S. Kawata, "Improving spatial resolution of two-photon microfabrication by using photoinitiator with high initiating efficiency," Appl. Phys. Lett. 90, 131106 (2007). [CrossRef]
  10. Y. Kuroiwa, N. Takeshima, Y. Narita, S. Tanaka, and K. Hirao, "Arbitrary micropatterning method in femtosecond laser microprocessing using diffractive optical elements," Opt. Express 12, 1908-1915 (2004). [CrossRef]
  11. S. Matsuo, S. Juodkazis, and H. Misawa, "Femtosecond laser microfabrication of periodic structures using a microlens array," Appl. Phys. A 80, 683-685 (2005). [CrossRef]
  12. J. Kato, N. Takeyasu, Y. Adachi, H. -B. Sun, and S. Kawata, "Multiple-spot parallel processing for laser micronanofabrication," Appl. Phys. Lett. 86, 044102 (2005). [CrossRef]
  13. Y. Hayasaki, T. Sugimoto, A. Takita, and N. Nishida, "Variable holographic femtosecond laser processing by use of a spatial light modulator," Appl. Phys. Lett. 87, 031101 (2005). [CrossRef]
  14. S. Hasegawa, Y. Hayasaki, and N. Nishida, "Holographic femtosecond laser processing with multiplexed phase Fresnel lenses," Opt. Lett. 31, 1705-1707 (2006). [CrossRef] [PubMed]
  15. S. Hasegawa and Y. Hayasaki, "Holographic femtosecond laser processing with multiplexed phase fresnel lenses displayed on a liquid crystal spatial light modulator," Opt. Rev. 14, 208-213 (2007). [CrossRef]
  16. L. Kelemen, S. Valkai, and P. Ormos, "Parallel photopolymerisation with complex light patterns generated by diffractive optical elements," Opt. Express 15, 14488-14497 (2007). [CrossRef] [PubMed]
  17. Y. Igasaki, F. Li, N. Yoshida, H. Toyoda, T. Inoue, N, Mukohzaka, Y. Kobayashi, and T. Hara, "High efficiency electrically-addressable phase-only spatial light modulator," Opt. Rev. 6, 339-344 (1999). [CrossRef]
  18. J. Bengtsson, "Kinoform design with an optimal-rotation-angle method," Appl. Opt. 33, 6879-6884 (1994). [CrossRef] [PubMed]
  19. H. Takahashi, S. Hasegawa, and Y. Hayasaki, "Holographic femtosecond laser processing using optimal-rotation-angle method with compensation of spatial frequency response of liquid crystal spatial light modulator," Appl. Opt. 46, 5917-5923 (2007). [CrossRef] [PubMed]
  20. K. Chaen, H. Takahashi, S. Hasegawa, and Y. Hayasaki, "Display method with compensation of the spatial frequency response of a liquid crystal spatial light modulator for holographic femtosecond laser processing," Opt. Commun. 280, 165-172 (2007). [CrossRef]
  21. K. K. Seet, V. Mizeikis, S. Juodkazis, and H. Misawa, "Three-dimensional horizontal circular spiral photonic crystals with stop gaps below 1μm," Appl. Phys. Lett. 88, 221101 (2006). [CrossRef]
  22. H. Segawa, S. Yamaguchi, Y. Yamazaki, T. Yano, S. Shibata, and H. Misawa, "Top-gathering pillar array of hybrid organic-inorganic material by means of self-organization," Appl. Phys. A 83, 447-451 (2006). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited