OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 16, Iss. 21 — Oct. 13, 2008
  • pp: 16600–16608

Optimal higher-lying band gaps for photonic crystals with large dielectric contrast

Ruey-Lin Chern and Sheng D. Chao  »View Author Affiliations

Optics Express, Vol. 16, Issue 21, pp. 16600-16608 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (491 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We investigate the characteristics of higher-lying band gaps for two-dimensional photonic crystals with large dielectric contrast. An optimal common band gap is attained on a hexagonal lattice of circular dielectric cylinders at relatively higher bands. The corresponding TM and TE modes exhibit simultaneous band edges, around which the frequency branches tend to be dispersionless. Unlike the fundamental band gap which usually appears between the dielectric and air bands, the optimal higher-lying gap in the present study occurs between two consecutive dielectric-like bands with high energy fill factors. The underlying mechanism is illustrated with the apparent change of eigenmode patterns inside the dielectric regions for both polarizations. In particular, the common gap region is bounded by two successive orders of Mie resonance frequencies on a single dielectric cylinder with the same geometry and material, where the Mie resonance modes show similar internal fields with the respective eigenmodes for the photonic crystal.

© 2008 Optical Society of America

OCIS Codes
(260.5740) Physical optics : Resonance
(290.4020) Scattering : Mie theory
(160.5298) Materials : Photonic crystals

ToC Category:
Photonic Crystals

Original Manuscript: August 5, 2008
Revised Manuscript: September 23, 2008
Manuscript Accepted: September 24, 2008
Published: October 2, 2008

Ruey-Lin Chern and Sheng D. Chao, "Optimal higher-lying band gaps for photonic crystals with large dielectric contrast," Opt. Express 16, 16600-16608 (2008)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. E. Yablonovitch, "Inhibited Spontaneous Emission in Solid-State Physics and Electronics," Phys. Rev. Lett. 58, 2059-2062 (1987). [CrossRef] [PubMed]
  2. S. John, "Strong localization of photons in certain disordered dielectric superlattices," Phys. Rev. Lett. 58, 2486-2489 (1987). [CrossRef] [PubMed]
  3. J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals: Molding the Flow of Light (Princeton University Press, 1995).
  4. A. Moroz and A. Tip, "Resonance-induced effects in photonic crystals," J. Phys. Condens Matter 11, 2503-2512 (1999). [CrossRef]
  5. E. Lidorikis, M. M. Sigalas, E. N. Economou, and C. M. Soukoulis, "Gap deformation and classical wave localization in disordered two-dimensional photonic-band-gap materials," Phys. Rev. B 61, 458-13,464 (2000). [CrossRef]
  6. R. D. Meade, A. M. Rappe, K. D. Brommer, and J. D. Joannopoulos, "Nature of the photonic band gap: some insights from a field analysis," J. Opt. Soc. Am. B 10, 328-332 (1993).
  7. J. D. Joannopoulos, P. R. Villeneuve, and S. Fan, "Photonic crystals: putting a new twist on light," Nature 386, 143-149 (1997). [CrossRef]
  8. R. D. Meade, K. D. Brommer, A. M. Rappe, and J. D. Joannopoulos, "Existence of a photonic band gap in two dimensions," Appl. Phys. Lett. 61, 495-497 (1992). [CrossRef]
  9. P. R. Villeneuve and M. Piche´, "Photonic band gaps in two-dimensional square and hexagonal lattices," Phys. Rev. B 46, 4969-4972 (1992). [CrossRef]
  10. R. L. Chern, C. C. Chang, C. C. Chang, and R. Hwang, "Large full band gaps for photonic crystals in two dimensions computed by an inverse method with multigrid acceleration," Phys. Rev. E 68, 26,704 (2003). [CrossRef]
  11. H. K. Fu, Y. F. Chen, R. L. Chern, and C. C. Chang, "Connected hexagonal photonic crystals with largest full band gap," Opt. Express 13, 7854-7860 (2005). [CrossRef] [PubMed]
  12. R. L. Chern, C. C. Chang, C. C. Chang, and R. R. Hwang, "Two Classes of Photonic Crystals with Simultaneous Band Gaps," Jpn. J. Appl. Phys. 43, 3484-3490 (2004). [CrossRef]
  13. D. Cassagne, C. Jouanin, and D. Bertho, "Hexagonal photonic-band-gap structures," Phys. Rev. B 53, 7134-7142 (1996). [CrossRef]
  14. C. S. Kee, J. E. Kim, and H. Y. Park, "Absolute photonic band gap in a two-dimensional square lattice of square dielectric rods in air," Phys. Rev. E 56, 6291-6293 (1997). [CrossRef]
  15. L. Shen, S. He, and S. Xiao, "Large absolute band gaps in two-dimensional photonic crystals formed by large dielectric pixels," Phys. Rev. B 66, 165,315 (2002). [CrossRef]
  16. M. M. Sigalas, C. M. Soukoulis, C. T. Chan, and D. Turner, "Localization of electromagnetic waves in twodimensional disordered systems," Phys. Rev. B 53, 8340-8348 (1996). [CrossRef]
  17. M. Straub, M. Ventura, and M. Gu, "Multiple Higher-Order Stop Gaps in Infrared Polymer Photonic Crystals," Phys. Rev. Lett. 91, 43,901 (2003). [CrossRef]
  18. L. Shen, Z. Ye, and S. He, "Design of two-dimensional photonic crystals with large absolute band gaps using a genetic algorithm," Phys. Rev. B 68, 35,109 (2003). [CrossRef]
  19. J. Y. Ye, V. Mizeikis, Y. Xu, S. Matsuo, and H. Misawa, "Fabrication and optical characteristics of silicon-based two-dimensional photonic crystals with honeycomb lattice," Opt. Commun. 211, 205-213 (2002). [CrossRef]
  20. J. Y. Ye, S. Matsuo, V. Mizeikis, and H. Misawa, "Silicon-based honeycomb photonic crystal structures with complete photonic band gap at 1.5 μm wavelength," J. Appl. Phys. 96, 6934 (2004). [CrossRef]
  21. R. L. Chern, C. C. Chang, C. C. Chang, and R. R. Hwang, "Numerical Study of Three-Dimensional Photonic Crystals with Large Band Gaps," J. Phys. Soc. Jpn. 73, 727-737 (2004). [CrossRef]
  22. C. C. Chang, J. Y. Chi, R. L. Chern, C. C. Chang, C. H. Lin, and C. O. Chang, "Effect of the inclusion of small metallic components in a two-dimensional dielectric photonic crystal with large full band gap," Phys. Rev. B 70, 75,108 (2004). [CrossRef]
  23. K. Ohtaka and Y. Tanabe, "Photonic Band using Vector Spherical Waves. I. Various Properties of Bloch Electric Fields and Heavy Photons," J. Phys. Soc. Jpn. 65, 2265-2275 (1996). [CrossRef]
  24. M. G. Salt and W. L. Barnes, "Flat photonic bands in guided modes of textured metallic microcavities," Phys. Rev. B 61, 11,125-11,135 (2000).
  25. J. Plouin, E. Richalot, O. Picon,M. Carras, and A. de Rossi, "Photonic band structures for bi-dimensional metallic mesa gratings," Opt. Express 14, 9982-9987 (2006). [CrossRef] [PubMed]
  26. R. L. Chern, C. C. Chang, and C. C. Chang, "Analysis of surface plasmon modes and band structures for plasmonic crystals in one and two dimensions," Phys. Rev. E 73, 36,605 (2006). [CrossRef]
  27. C. F. Bohren and D. R. Huffman, Absorption and scattering of light by small particles (JohnWiley & Sons, New York, 1983).
  28. C. A. Balanis, Advanced Enginerring Electromechanics (John Wiley & Sons, New York, 1989).
  29. C. Rockstuhl, U. Peschel, and F. Lederer, "Correlation between single-cylinder properties and bandgap formation in photonic structures," Opt. Lett. 31, 1741-1743 (2006). [CrossRef] [PubMed]
  30. D. M. Pozar, Microwave engineering, 3rd ed. (Wiley, New York, 2005).
  31. R. C. Kell, A. C. Greenham, and G. C. E. Olds, "High-Permittivity Temperature-Stable Ceramic Dielectrics with Low Microwave Loss," J. Am. Ceram. Soc. 56, 352-354 (1973). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited