OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 16, Iss. 21 — Oct. 13, 2008
  • pp: 16646–16658

Light deflection and modulation through dynamic evolution of photoinduced waveguides

Germano Montemezzani, Mohamed Gorram, Nicolas Fressengeas, Flurin Juvalta, Mojca Jazbinsek, and Peter Günter  »View Author Affiliations

Optics Express, Vol. 16, Issue 21, pp. 16646-16658 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (1745 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Light induced waveguides produced by lateral illumination of a photorefractive crystal show a complex dynamic evolution upon removal of the sustaining applied electric field. Using this effect, deflection and modulation of the guided light is realized by taking advantage of the screening and counter-screening of the space charge distribution. The spot separation upon deflection can exceed 10 times the original waveguide width. Numerical simulations of the refractive index evolution and beam propagation show a good agreement with the observations.

© 2008 Optical Society of America

OCIS Codes
(130.2790) Integrated optics : Guided waves
(190.4390) Nonlinear optics : Nonlinear optics, integrated optics
(190.5330) Nonlinear optics : Photorefractive optics
(250.7360) Optoelectronics : Waveguide modulators

ToC Category:
Integrated Optics

Original Manuscript: June 13, 2008
Revised Manuscript: August 5, 2008
Manuscript Accepted: August 6, 2008
Published: October 2, 2008

Germano Montemezzani, Mohamed Gorram, Nicolas Fressengeas, Flurin Juvalta, Mojca Jazbinsek, and Peter Günter, "Light deflection and modulation through dynamic evolution of photoinduced waveguides," Opt. Express 16, 16646-16658 (2008)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. Ph. Dittrich, G. Montemezzani, P. Bernasconi, and P. Günter, "Fast, reconfigurable light-induced waveguides," Opt. Lett. 24, 1508-1510 (1999). [CrossRef]
  2. F. Juvalta, B. Koziarska-Glinka, M. Jazbinsek, G. Montemezzani, K. Kitamura and P. Günter, "Deep UV light induced, fast reconfigurable and fixed waveguides in Mg doped LiTaO3," Opt. Express 14, 8278-8289 (2006), http://www.opticsexpress.org/abstract.cfm?URI=oe-14-18-8278. [CrossRef] [PubMed]
  3. P. Zhang, D. Yang, J. Zhao and M. Wang, "Photo-written waveguides in iron-doped lithium niobate crystal employing binary optical masks," Opt. Eng. 45, 074603 (2006). [CrossRef]
  4. M. F. Shih, M. Segev, and G. Salamo, "Circular waveguides induced by two-dimensional bright steady-state photorefractive spatial screening solitons," Opt. Lett. 21, 931-933 (1996). [CrossRef] [PubMed]
  5. G. Roosen and G. T. Sincerbox, "Optically generated light beam deflection," J. Appl.Phys. 54, 1628-1630 (1983). [CrossRef]
  6. E. Voit, C. Zaldo and P. Günter, "Optically induced variable light deflection by anisotropic Bragg diffraction in photorefractive KNbO3," Opt. Lett. 11, 309-311 (1986). [CrossRef] [PubMed]
  7. B. Fischer and S. Sternklar, "Self Bragg matched beam steering using the double color pumped photorefractive oscillator," Appl. Phys. Lett. 51, 74-75 (1987). [CrossRef]
  8. M. P. Petrov, A. P. Paugurt, V. V. Bryskin, S. Wevering, B. Andreas and E. Krätzig, "Dynamic light beam deflection caused by space charge waves in photorefractive crystals," Appl. Phys. B 69, 341-344 (1999). [CrossRef]
  9. S. Honma, A. Okamoto and Y. Takayama, "Photorefractive duplex two-wave mixing and all-optical deflection switch," J. Opt. Soc. Am. B 18, 974-975 (2001). [CrossRef]
  10. D. Kip, M. Wesner, E. Krätzig, V. Shandarov and P. Moretti, "All-optical beam deflection and switching in strontium-barium-niobate waveguides," Appl. Phys. Lett. 72, 1960-1962 (1998). [CrossRef]
  11. W. L. She, Z. X. Yu and W. K. Lee, "Laser beam deflection in a photorefractive crystal induced by lateral beam movement," Opt. Commun. 135, 342-346 (1997). [CrossRef]
  12. R. Mosimann, D. Haertle, M. Jazbinsek, G. Montemezzani and P. Günter, "Determination of the absorptionconstant in the interband region by photocurrent measurements," Appl. Phys. B 83, 115-119 (2006). [CrossRef]
  13. K. Okamoto, Fundamentals of optical waveguides (Academic Press, San Diego, 2000).
  14. G. P. Agrawal, Nonlinear fiber optics, 4th Ed., (Academic Press, Boston, 2007).
  15. A. A. Zozulya and D. Z. Anderson, "Nonstationary self-focusing in photorefractive media," Opt. Lett. 20, 837-839 (1995). [CrossRef] [PubMed]
  16. R. Ryf, M. Wiki, G. Montemezzani, P. Günter, and A. A. Zozulya, "Launching one-transverse-dimension photorefractive solitons in KNbO3 crystals," Opt. Commun. 159, 339-348 (1999). [CrossRef]
  17. M. Klotz, H. Meng, G. J. Salamo, M. Segev, and S. R. Montgomery, "Fixing the photorefractive soliton," Opt. Lett. 24, 77-79 (1999). [CrossRef]
  18. I. Biaggio, "Recording speed and determination of basic materials properties," in: Photorefractive Materials and Their Applications 2: Materials, P.Günter, and J. P. Huignard, eds., (Springer, New York, 2006), pp. 51-81.
  19. N. Fressengeas, J. Maufoy and G. Kugel, "Temporal behavior of bidimensional photorefractive bright spatial solitons," Phys. Rev. E 54, 6866-6875 (1996). [CrossRef]
  20. S. Ducharme, J. Feinberg and R. R. Neurgaonkar, "Electrooptic and piezoelectric measurements in photorefractive barium titanate and strontium barium niobate," IEEE J. Quantum Electron. QE-23, 2116-2121 (1987). [CrossRef]
  21. G. Montemezzani, P. Rogin, M. Zgonik and P. Günter, "Interband photorefractive effects: Theory and experiments in KNbO3," Phys. Rev. B 49, 2484-2502 (1994). [CrossRef]
  22. F. Juvalta, M. Jazbinsek, P. Gunter and K. Kitamura, "Electro-optical properties of near-stoichiometric and congruent lithium tantalate at ultraviolet wavelengths," J. Opt. Soc. Am. B 23, 276-281 (2006). constant in the interband region by photocurrent measurements," Appl. Phys. B 83, 115-119 (2006). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material

» Media 1: MOV (1222 KB)     
» Media 2: MOV (1569 KB)     
» Media 3: MOV (1251 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited