OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 16, Iss. 21 — Oct. 13, 2008
  • pp: 16659–16669

First-principle derivation of gain in high-index-contrast waveguides

Jacob T. Robinson, Kyle Preston, Oskar Painter, and Michal Lipson  »View Author Affiliations


Optics Express, Vol. 16, Issue 21, pp. 16659-16669 (2008)
http://dx.doi.org/10.1364/OE.16.016659


View Full Text Article

Enhanced HTML    Acrobat PDF (344 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

From first principles we develop figures of merit to determine the gain experienced by the guided mode and the lasing threshold for devices based on high-index-contrast waveguides. We show that as opposed to low-index-contrast systems, this quantity is not equivalent to the power confinement since in high-index-contrast structures the electric and magnetic field distributions cannot be related by proportionality constant. We show that with a slot waveguide configuration it is possible to achieve more gain than one would expect based on the power confinement in the gain media. Using the figures of merit presented here we optimize a slot waveguide geometry to achieve low-threshold lasing and discuss the fabrication tolerances of such a design.

© 2008 Optical Society of America

OCIS Codes
(130.2790) Integrated optics : Guided waves
(130.3120) Integrated optics : Integrated optics devices
(140.5680) Lasers and laser optics : Rare earth and transition metal solid-state lasers

ToC Category:
Integrated Optics

History
Original Manuscript: July 15, 2008
Revised Manuscript: September 22, 2008
Manuscript Accepted: September 30, 2008
Published: October 3, 2008

Citation
Jacob T. Robinson, Kyle Preston, Oskar Painter, and Michal Lipson, "First-principle derivation of gain in high-index-contrast waveguides," Opt. Express 16, 16659-16669 (2008)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-21-16659


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. W. Fang, H. Park, O. Cohen, R. Jones, M. J. Paniccia, and J. E. Bowers, "Electrically pumped hybrid AlGaInAs-silicon evanescent laser," Opt. Express 14, 9203-9210 (2006). [CrossRef] [PubMed]
  2. V. R. Almeida, Q. Xu, C. A. Barrios, and M. Lipson, "Guiding and confining light in void nanostructure," Opt. Lett. 29, 1209-1211 (2004). [CrossRef] [PubMed]
  3. Q. Xu, V. R. Almeida, R. R. Panepucci, and M. Lipson, "Experimental demonstration of guiding and confining light in nanometer-size low-refractive-index material," Opt. Lett. 29, 1626-1628 (2004). [CrossRef] [PubMed]
  4. C. A. Barrios and M. Lipson, "Electrically driven silicon resonant light emitting device based on slot-waveguide," Opt. Express 13, 10092-10101 (2005). [CrossRef] [PubMed]
  5. F. Ning-Ning, J. Michel, and L. C. Kimerling, "Optical field concentration in low-index waveguides," IEEE J. Quantum Electron. 42, 885-890 (2006).
  6. J. T. Robinson, C. Manolatou, C. Long, and M. Lipson, "Ultrasmall mode volumes in dielectric optical microcavities," Phys. Rev. Lett. 95, 143901 (2005). [CrossRef] [PubMed]
  7. E. Burstein and C. Weisbuch, eds., Confined electrons and photons, (Plenum Press: New York, NY,1995) [CrossRef]
  8. T. D. Visser, H. Blok, B. Demeulenaere, and D. Lenstra, "Confinement factors and gain in optical amplifiers," IEEE J. Quantum Electron. 33, 1763-1766 (1997). [CrossRef]
  9. C. A. Barrios, K. B. Gylfason, B. Sánchez, A. Griol, H. Sohlström, M. Holgado, and R. Casquel, "Slot-waveguide biochemical sensor," Opt. Lett. 32, 3080-3082 (2007). [CrossRef] [PubMed]
  10. F. Dell'Olio and V. M. Passaro, "Optical sensing by optimized silicon slot waveguides," Opt. Express 15, 4977-4993 (2007). [CrossRef] [PubMed]
  11. H. Kogelnik, Theory of optical waveguides, in Guided-wave optoelectronics, T. Tamir, ed., (Springer Verlag: Berlin, 1990). p. 7.
  12. L. A. Coldren and S. W. Corzine, Diode lasers and photonic integrated circuits (J. Wiley & Sons, New York, NY, 1995).
  13. C. Pollock and M. Lipson, Integrated photonics (Kluwer Academic, Norwell, MA, 2003).
  14. J. Haes, B. Demeulenaere, R. Baets, D. Lenstra, T. D. Visser, and H. Blok, "Difference between te and tm modal gain in amplifying waveguides: Analysis and assessment of two perturbation approaches," Opt. Quantum Electron. 29, 263-273 (1997). [CrossRef]
  15. J. D. Jackson, Classical electrodynamics. 3rd ed., (John Wiley & Sons, Inc., Hoboken, NJ, 1999).
  16. H. A. Haus, Waves and fileds in optoelectronics (Prentice-Hall, Englewood Cliffs, NJ, 1984).
  17. L. D. Landau and E. M. Lifshitz, Electrodynamics of continuous media (Pergamon Press, Reading, MA, 1960).
  18. G. J. Veldhuis, O. Parriaux, H. J. W. M. Hoekstra, and P. V. Lambeck, "Sensitivity enhancement in evanescent optical waveguide sensors," J. Lightwave Technol. 18, 677-682 (2000). [CrossRef]
  19. R. Perahia, O. Painter, V. Moreau, and R. Colombelli, "Design of quantum cascade lasers for intra-cavity sensing in the mid infrared," (in preparation).
  20. A. E. Siegman, Lasers (University Science Books, Sausalito, CA,1986).
  21. J. T. Robinson, L. Chen, and M. Lipson, "On-chip gas detection in silicon optical microcavities," Opt. Express 16, 4296-4301 (2008). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2. Fig. 3.
 
Fig. 4.
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited