OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 16, Iss. 21 — Oct. 13, 2008
  • pp: 16670–16679

A micromachined tunable coupled-cavity laser for wide tuning range and high spectral purity

H. Cai, B. Liu, X. M. Zhang, A. Q. Liu, J. Tamil, T. Bourouina, and Q. X. Zhang  »View Author Affiliations

Optics Express, Vol. 16, Issue 21, pp. 16670-16679 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (727 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



This paper presents the design and experimental study of a coupled-cavity laser based on the micromachining technology for wide tuning range and improved spectral purity. The core part of this design utilizes a deep-etched movable parabolic mirror to couple two identical Fabry-Pérot chips and thus allows the active adjustment of the cavity gap so as to optimize the mode selection and to increase the tuning range as well. In experiment, the laser achieves the single longitudinal mode output over 51.3 nm and an average side-mode-suppression ratio of 22 dB when the tuning current varies from 5.7–10.8 mA. The measured wavelength tuning speed is 1.2 µs and the single mode output is stable at any wavelength when the tuning current is varied within ±0.06 mA. Compared with the conventional fixed cavity gap coupled-cavity lasers, such design overcomes the phase mismatching and mode instability problems while maintaining the merit of high-speed wavelength tuning using electrical current.

© 2008 Optical Society of America

OCIS Codes
(140.3600) Lasers and laser optics : Lasers, tunable
(140.3325) Lasers and laser optics : Laser coupling
(230.4685) Optical devices : Optical microelectromechanical devices
(130.3990) Integrated optics : Micro-optical devices

ToC Category:
Lasers and Laser Optics

Original Manuscript: July 14, 2008
Revised Manuscript: September 24, 2008
Manuscript Accepted: September 30, 2008
Published: October 3, 2008

H. Cai, B. Liu, X. M. Zhang, A. Q. Liu, J. Tamil, T. Bourouina, and Q. X. Zhang, "A micromachined tunable coupled-cavity laser for wide tuning range and high spectral purity," Opt. Express 16, 16670-16679 (2008)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. E. Bruce, "Tunable lasers," IEEE Spectrum 39, 35-39 (2002).
  2. L. A. Coldren, "Monolithic tunable diode lasers," IEEE J. Sel. Top. Quantum Electron. 6, 988-999 (2000). [CrossRef]
  3. M. C. Y. Huang, Y. Zhou, and C. J. Chang-Hasnain, "A nanoelectromechanical tunable laser," Nat. Photonics 2, 180-184 (2008). [CrossRef]
  4. N. P. Caponio, M. Goano, I. Maio, M. Meliga G. P. Bava, G. D. Anis, and I. Montrosset, "Analysis and Design criteria of Three-section DBR tunable lasers," IEEE. J. Sel. Areas Commun. 8, 1203-1213 (1990)). [CrossRef]
  5. C. W. Wilmsen, H. Temkin, and L. A. Coldren, Vertical-Cavity Surface emitting lasers: Design, Fabrication, Characterization, and Applications (Cambridge Univ. Press, New York, 1999).
  6. P. M. Anandarajah, R. Maher, and L. P. Barry,  et al., "Characterization of frequency drift of sampled-grating DBR laser module under direct modulation." IEEE Photon. Technol. Lett. 20, 239-241 (2008). [CrossRef]
  7. Y. Tohmori, Y. Yoshikuni, and H. Ishii, "Broad-range wavelength-tunable superstructure grating (SSG) DBR lasers," IEEE J. Quantum Electron. 29, 1817-1823 (1993). [CrossRef]
  8. M. C. Y. Huang, Y. Zhou, and C. J. Chang-Hasnain, "A surface-emitting laser incorporating a high-index-contrast subwavelength grating," Nat. Photonics 1, 119-122 (2007). [CrossRef]
  9. M. C. Y. Huang, Y. Zhou, and C. J. Chang-Hasnain, "Nano electro-mechanical optoelectronic tunable VCSEL," Opt. Express 15, 1222-1227, (2007), http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-3-1222. [CrossRef] [PubMed]
  10. L. A. Coldren, B. I. Miller, K. Iga, and J. A. Rentschler, "Monolithic two-section GaInAsP/InP active-optical-resonator devices formed by reactive-ion-etching," Appl. Phys. Lett. 38, 315-317 (1981). [CrossRef]
  11. W. T. Tsang, N. A. Olsson, and R. A. Logan, "High-speed direct single-frequency modulation with large tuning rate and frequency excursion in cleaved-coupled-cavity semiconductor lasers," Appl. Phys. Lett. 42, 650-652 (1983). [CrossRef]
  12. L. A. Coldren and T. L. Koch, "Analysis and design of coupled-cavity lasers," IEEE J. Quantum Electron. 20, 659-682 (1984). [CrossRef]
  13. T. L. koch and L. A. Coldren, "Optimum coupling junction and cavity length for coupled-cavity semiconductor lasers," J. Appl. Phys. 57, 742-754 (1985). [CrossRef]
  14. R. J. Lang and A. Yariv, "An exact formulation of coupled-mode theory for coupled-cavity lasers," IEEE J. Quantum Electron. 24, 66-72 (1988). [CrossRef]
  15. A. Q. Liu, X. M. Zhang, H. Cai, A. B. Yu, and C. Lu, "Retro-axial VOA using parabolic mirror pair" IEEE Photon. Technol. Lett. 19, 692-694 (2007). [CrossRef]
  16. X. M. Zhang, A. Q. Liu, D. Y. Tang and C. Lu, "Discrete wavelength tunable laser using microelectromechanical systems technology," Appl. Phys. Lett. 84, 329-331 (2004) [CrossRef]
  17. A. Q. Liu, X. M. Zhang, D. Y. Tang and C. Lu, "Tunable laser using micromachined grating with continuous wavelength tuning," Appl. Phys. Lett. 85, 3684-3686 (2004). [CrossRef]
  18. A. Q. Liu and X. M. Zhang, "A review of MEMS external-cavity tunable lasers," J. Micromech. Microengin. 17, R1-R13 (2007). [CrossRef]
  19. A. E. Siegman, Lasers (University Science Books, CA, 1986).
  20. Y. Sidorin and D. Howe, "Laser-diode wavelength tuning based on butt coupling into an optical fiber," Opt. Lett. 22, 802-804 (1997). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited