OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 16, Iss. 21 — Oct. 13, 2008
  • pp: 16680–16690

Secure key generation using an ultra-long fiber laser: transient analysis and experiment

Avi Zadok, Jacob Scheuer, Jacob Sendowski, and Amnon Yariv  »View Author Affiliations

Optics Express, Vol. 16, Issue 21, pp. 16680-16690 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (246 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The secure distribution of a secret key is the weakest point of shared-key encryption protocols. While quantum key distribution schemes could theoretically provide unconditional security, their practical implementation remains technologically challenging. Here we provide an extended analysis and present an experimental support of a concept for a classical key generation system, based on establishing laser oscillation between two parties, which is realized using standard fiber-optic components. In our Ultra-long Fiber Laser (UFL) system, each user places a randomly chosen, spectrally selective mirror at his/her end of a fiber laser, with the two-mirror choice representing a key bit. We demonstrate the ability of each user to extract the mirror choice of the other using a simple analysis of the UFL signal, while an adversary can only reconstruct a small fraction of the key. The simplicity of this system renders it a promising alternative for practical key distribution in the optical domain.

© 2008 Optical Society of America

OCIS Codes
(060.2330) Fiber optics and optical communications : Fiber optics communications
(140.3510) Lasers and laser optics : Lasers, fiber
(060.4785) Fiber optics and optical communications : Optical security and encryption

ToC Category:
Fiber Optics and Optical Communications

Original Manuscript: August 15, 2008
Revised Manuscript: September 15, 2008
Manuscript Accepted: October 1, 2008
Published: October 3, 2008

Avi Zadok, Jacob Scheuer, Jacob Sendowski, and Amnon Yariv, "Secure key generation using an ultra-long fiber laser: transient analysis and experiment," Opt. Express 16, 16680-16690 (2008)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. S. Singh, The Code Book: The science of secrecy from ancient Egypt to quantum cryptography (Fourth Estate, 1999).
  2. G. Vernam, "Cipher printing telegraph systems for secret wire and radio telegraphic communications," J. Am. Inst. Electr. Eng. 45, 109-116 (1926).
  3. C. H. Bennett, and G. Brassard, "Quantum public key distribution system," IBM Tech. Discl. Bull. 28, 3153-3163 (1985).
  4. A. K. Ekert, "Quantum cryptography based on Bell�??s theorem," Phys. Rev. Lett. 67, 661-663 (1991). [CrossRef] [PubMed]
  5. N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, "Quantum cryptography," Rev. Mod. Phys. 74, 145-195 (2002). [CrossRef]
  6. P. W. Shor, and J. Preskill, "Simple proof of security of the BB84 quantum key distribution protocol," Phys. Rev. Lett. 85, 441-444 (2000). [CrossRef] [PubMed]
  7. L.-M. Duan, M. D. Lukin, J. I. Cirac, and P. Zoller, "Long-distance quantum communication with atomic ensembles and linear optics," Nature 414, 413-424 (2001). [CrossRef] [PubMed]
  8. M. Aspelmeyer, H. R. Bohm, T. Gyasto, T. Jennewein, R. Kaltenbaek, M. Lindenthal, G. Molina-Terriza, A. Poppe, K. Resch, M. Taraba, R. Ursin, P. Walther, and A. Zeilinger, "Long distance free space distribution of quantum entanglement," Science 301, 621-623 (2003). [CrossRef] [PubMed]
  9. I. Marcikic, H. de Riedmatten, W. Tittel, H. Zbinden, M. Legre, and N. Gisin, "Distribution of time-bin entangled qubits over 50 km of optical fiber," Phys. Rev. Lett. 93, 180502 (2004). [CrossRef] [PubMed]
  10. R. J. Hughes, G. L. Morgan, and C. G. Peterson, "Quantum key distribution over a 48-km optical fiber network," J. Mod. Opt. 47, 533-547 (2000).
  11. C. Gobby, Z. L. Yuan, and A. J. Shields, "Quantum key distribution over 122 km of standard telecom fiber," Appl. Phys. Lett. 84, 3762-3764 (2004). [CrossRef]
  12. W.-Y. Hwang, "Quantum key distribution with high loss: towards global secure communication," Phys. Rev. Lett. 91, 057901 (2003). [CrossRef] [PubMed]
  13. H.-K. Lo, X. Ma, and K. Chen, "Decoy state quantum key distribution," Phys. Rev. Lett. 94, 230504 (2005). [CrossRef] [PubMed]
  14. X.-B. Wang, "Beating the photon-number-splitting attack in practical quantum cryptography," Phys. Rev. Lett. 94, 230503 (2005). [CrossRef] [PubMed]
  15. Z. L. Yuan, A. R. Dixon, J. F. Dynes, A. W. Sharpe, and A. J. Shields, "Gigahertz quantum key distribution with InGaAs avalanche photodiodes," Appl. Phys. Lett. 92, 201104 (2008). [CrossRef]
  16. N. Lutkenhaus, "Security against individual attacks for realistic quantum key distribution," Phys. Rev. A 61, 052304 (2000). [CrossRef]
  17. W. Tittel, J. Brendel, H. Zbinden, and N. Gisin, "Long-distance Bell-type tests using energy-time entangled photons," Phys. Rev. A 59, 4150-4163, (1999). [CrossRef]
  18. P. G. Kwiat, A. M. Steinberg, R. Y. Chiao, P. H. Eberhard, and M. D. Petroff, "High efficiency single photon detectors," Phys. Rev. A 48, R867-870 (1993). [CrossRef] [PubMed]
  19. A. Tanaka, M. Fujiwara, S. W. Nam, Y. Nambu, S. Takahashi, W. Maeda, K.-I. Yoshino, S. Miki, B. Baek, Z. Wang, A. Tajima, M. Sasaki, and A. Tomita, "Ultra fast quantum key distribution over a 97 km installed telecom fiber with wavelength division multiplexing clock synchronization," Opt. Express 16, 11354-11360 (2008). [CrossRef] [PubMed]
  20. H. Takesue, S. W. Nam, Q. Zhang, R. H. Hadfield, T. Honjo, K. Tamaki, and Y. Yamamoto, "Quantum key distribution over a 40-dB channel loss using superconducting single photon detectors," Nat. Photon. 1, 343-348 (2007). [CrossRef]
  21. L. Tancevski, I. Andonovich, and J. Budin, "Secure optical network architecture utilizing wavelength hopping / time spreading codes," IEEE Photon. Technol. Lett. 7, 573-575 (1995). [CrossRef]
  22. D. D. Sampson, G. Pendock, and R. A. Griffin, "Photonic code-division multiple-access communications," Fiber Integr. Opt. 16, 129-157 (1997). [CrossRef]
  23. T. H. Shake, "Security performance of optical CDMA against eavesdropping," IEEE J. Lightwave Technol. 23, 655-670 (2005). [CrossRef]
  24. T. H. Shake, "Confidentiality performance of spectral-phase-encoded optical CDMA," IEEE J. Lightwave Technol. 23, 1652-1663 (2005). [CrossRef]
  25. J.-P. Goedgebuer, L. Larger, and H. Porte, "Optical cryptosystem based on synchronization of hyperchaos generated by a delayed feedback tunable laser diode," Phys. Rev. Lett. 80, 2249-2252 (1998). [CrossRef]
  26. A. Argyris, D. Syvridis, L. Larger, V. Annovazzi-Lodi, P. Colet, I. Fischer, J. Garcia-Ojalvo, C. R. Mirasso, L. Pesquera, and K. A. Shore, "Chaos-based communications at high bit rates using commercial fiber-optic links," Nature 438, 343-346 (2005). [CrossRef] [PubMed]
  27. R. Pappu, R. Recht, J. Taylor, and N , Gershenfeld, "Physical one way functions," Science 297, 2026-2030 (2002). [CrossRef] [PubMed]
  28. J. Scheuer, J. and A. Yariv, "Giant fiber lasers: a new paradigm for secure key distribution," Phys. Rev. Lett. 97, 140502 (2006). [CrossRef] [PubMed]
  29. R. L. Rivest, A. Shamir, and L. M. Adleman, "A method for of obtaining digital signatures and public key cryptosystems," Commun. ACM 21, 120-126 (1978). [CrossRef]
  30. G. Brassard, "A note on the complexity of cryptography," IEEE Trans. Inf. Theory IT-25, 232-233 (1979). [CrossRef]
  31. G. A. Barbosa, "Fast and secure key distribution using mesoscopic coherence states of light," Phys. Rev. A 68, 052307 (2003). [CrossRef]
  32. B. Alpern, ad F. B. Schneider, "Key exchange using keyless cryptography," Info. Proc. Lett. 16, 79-81 (1983). [CrossRef]
  33. J. R. Barry, E. A. Lee, and D. G. Messerschmitt, Digital Communication (Kluwer Academic Publisher, 3rd Ed. 2004).
  34. C. K. Madsen, and J. H. Zhao, "A general planar waveguide autoregressive optical filter," IEEE J. Lightwave Technol. 14, 437-447 (1996). [CrossRef]
  35. S. Wolf, "Unconditional security in cryptography," Lectures on data security 1561, 217-250 (1999). [CrossRef]
  36. A. D. Wyner, "The wire-tap channel," Bell Syst. Tech. J. 54, 1355-1387 (1975).
  37. M. Anand, E. Cronin, M. Sherr, M. A. Blaze, and S. Kannan, "Security protocols with isotropic channels," Technical report MS-CIS-06-18, Department of Computer and Information Science, University of Pennsylvania (2006).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited