OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 16, Iss. 21 — Oct. 13, 2008
  • pp: 16735–16745

Characterization of efficient wavelength conversion by four-wave mixing in sub-micron silicon waveguides

Walid Mathlouthi, Haisheng Rong, and Mario Paniccia  »View Author Affiliations


Optics Express, Vol. 16, Issue 21, pp. 16735-16745 (2008)
http://dx.doi.org/10.1364/OE.16.016735


View Full Text Article

Enhanced HTML    Acrobat PDF (621 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We characterize silicon waveguide based wavelength converters using a commercial semiconductor optical amplifier (SOA) based wavelength converter as a benchmark. Conversion efficiency as high as -5.5 dB can be achieved using a 2.5 cm long sub-micron silicon-on-insulator rib waveguide. Comparison with the SOA reveals that silicon offers broader conversion bandwidth, higher OSNR, and negligible channel crosstalk. The impact of two-photon absorption and free carrier absorption on the conversion efficiency and the dependence of the efficiency on the rib waveguide dimensions are investigated theoretically. Using a nonlinear index coefficient of 4×10-14 cm2/W for silicon, we obtain good agreement between simulations and measurements.

© 2008 Optical Society of America

OCIS Codes
(060.4510) Fiber optics and optical communications : Optical communications
(190.2620) Nonlinear optics : Harmonic generation and mixing
(190.4380) Nonlinear optics : Nonlinear optics, four-wave mixing
(230.4320) Optical devices : Nonlinear optical devices
(230.7370) Optical devices : Waveguides
(250.5300) Optoelectronics : Photonic integrated circuits

ToC Category:
Nonlinear Optics

History
Original Manuscript: August 11, 2008
Revised Manuscript: September 29, 2008
Manuscript Accepted: September 29, 2008
Published: October 6, 2008

Citation
Walid Mathlouthi, Haisheng Rong, and Mario Paniccia, "Characterization of efficient wavelength conversion by four-wave mixing in sub-micron silicon waveguides," Opt. Express 16, 16735-16745 (2008)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-21-16735


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. L. Pavesi and D. J. Lockwood, Silicon Photonics (Spronger-Verlag, New York, 2004).
  2. G. T. Reed and A. P. Knights, Silicon Photonics: An Introduction (John Wiley, Chichester, UK, 2004). [CrossRef]
  3. S. Y. -H. Kuo, H. Rong, V. Sih, S. Xu, M. Paniccia, and O. Cohen, "Demonstration of wavelength conversion at 40 Gb/s data rate in silicon waveguides," Opt. Express 14, 11721 (2006). [CrossRef] [PubMed]
  4. H. Rong, Y.-H. Kuo, A. Liu, M. Paniccia, and O. Cohen, "High efficiency wavelength conversion of 10 Gb/s data in silicon waveguides," Opt. Express 14, 1182-1188 (2006). [CrossRef] [PubMed]
  5. S. Ayotte, H. Rong, S. Xu, O. Cohen, and M. Paniccia, "Multichannel dispersion compensation using a silicon waveguide-based optical phase conjugator," Opt. Lett. 32, 2393-2395 (2007). [CrossRef] [PubMed]
  6. S. Ayotte, S. Xu, H. Rong, and M. J. Paniccia, "Dispersion compensation by optical phase conjugation in silicon waveguide," Electron. Lett. 43, 1037-1039 (2007). [CrossRef]
  7. R. Salem, M. A. Foster, A. C. Turner, D. F. Geraghty, M. Lipson, and A. L. Gaeta, "Signal regeneration using low-power four-wave mixing on silicon chip," Nature Photonics 2, 35-38 (2008). [CrossRef]
  8. D. Nesset, T. Kelly, and D. Marcenac, "All-optical wavelength conversion using SOA nonlinearities," IEEE Commun. Mag. 36, 56-61 (1998). [CrossRef]
  9. C. Q. Xu, H. Okayama, and M. Kawahara, "1.5 μm band efficient broadband wavelength conversion by difference frequency generation in a periodically domain-inverted LiNbO3 channel waveguide," Appl. Phys. Lett. 63, 3559-3561 (1993). [CrossRef]
  10. S. L. Jansen, D. van den Borne, P. M. Krummrich, S. Spalter, G. D. Khoe, and H. de Waardt, "Long-Haul DWDM Transmission Systems Employing Optical Phase Conjugation," IEEE J. Lightwave Technol. 12, 505-520 (2006).
  11. A. Mecozzi, G. Contestabile, L. Graziani, F. Martelli, A. D�??Ottavi, P. Spano, R. Dall�??Ara, and J. Eckner, "Polarization-insensitive four-wave mixing in a semiconductor optical amplifier," Appl. Phys. Lett. 72, 2651-2653 (1998). [CrossRef]
  12. Details are available at http://www.photond.com.
  13. N. A. Olsson, "Lightwave systems with optical amplifiers," IEEE J. Lightwave Technol. 7, 1071-1082 (1989).
  14. F. Girardin, J. Eckner, G. Guekos, R. Dall�??Ara, A. Mecozzi, A. D�??Ottavi, F. Martelli, S. Scotti, and P. Spano, "Low-noise and very high efficiency four-wavemixing in 1.5-mm-long semiconductor optical amplifiers," IEEE Photon. Technol. Lett. 9, 746-748 (1997). [CrossRef]
  15. T. Akiyama, H. Kuatsuka, N. Hatori, Y. Nakata, H. Ebe, and M. Sugawara, "Symmetric highly efficient (~0 dB) wavelength conversion based on Four-wave mixing in quantum dot optical amplifiers," IEEE Photon. Technol. Lett. 14, 1139-1141 (2002). [CrossRef]
  16. F. G. Agis, C. Ware, D. Erasme, R. Ricken, V. Quiring, and W. Sohler, "10-GHz clock recovery using an optoelectronic phase-locked loop based on three-wave mixing in Periodically Poled Lithium Niobate," IEEE Photon. Technol. Lett. 18, 1460-1462 (2006). [CrossRef]
  17. G. McConnell and A. I. Ferguson, "Simultaneous stimulated Raman scattering and second harmonic generation in periodically poled lithium niobate," Opt. Express 13, 2099-2104 (2005). [CrossRef]
  18. T. Borghesani, "Semiconductor optical amplifiers for advanced optical applications," ICTON, paper Tu.C1.3, (2006). [CrossRef] [PubMed]
  19. H. Rong, A. Liu, R. Nicolaescu, M. Paniccia, O. Cohen, and D. Hak, "Raman gain and nonlinear optical absorption measurements in a low-loss silicon waveguide," Appl. Phys. Lett. 85, 2196-2198 (2004).
  20. R. Jones, H. Rong, A. Liu, A. W. Fang, M. J. Paniccia, D. Hak, and O. Cohen, "Net continuous wave optical gain in a low loss silicon-on-insulator waveguide by stimulated Raman scattering," Opt. Express 13, 519-525 (2005). [CrossRef] [PubMed]
  21. G. P. Agrawal, Nonlinear Fiber Optics, 3nd edition (Academic Press, New York, 2001). [CrossRef] [PubMed]
  22. O. Boyraz, T. Indukuri, and B. Jalali, "Self-phase-modulation induced spectral broadening in silicon waveguides," Opt. Express 12, 829-834 (2004). [CrossRef]
  23. H. Fukuda, K. Yamada, T. Shoji, M. Takahashi, T. Tsuchizawa, T. Watanabe, J. Takahashi, and S. Itabashi, "Four-wave mixing in silicon wire waveguides," Opt. Express 13, 4629-4637 (2005). [CrossRef] [PubMed]
  24. R. Salem, G. E. Tudury, T. U. Horton, G. M. Carter, and T. E. Murphy, "Polarization-insensitive optical clock recovery at 80 Gb/s using a silicon photodiode," IEEE Photon. Technol. Lett. 17, 1968-1970 (2005). [CrossRef]
  25. E. Dulkeith, Y. A. Vlasov, X. Chen, N. C. Panoiu, and R. M. Osgood, "Self-phase-modulation in submicron silicon-on-insulator photonic wires, " Opt. Express 14, 5524-5534 (2006). [CrossRef]
  26. A. D. Bristow, N. Rotenberg, and H. M. van Driel, "Two-photon absorption and Kerr coefficients of silicon for 850-2200 nm," Appl. Phys. Lett. 90, 191104 (2007). [CrossRef] [PubMed]
  27. Q. Lin, J. Zhang, G. Piredda, R. W. Boyd, P. M. Fauchet, and G. P. Agrawal, "Dispersion of silicon nonlinearities in the near infrared region," Appl. Phys. Lett. 91, 21111 (2007). [CrossRef]
  28. M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Shmidt, M. Lipson, and A. L. Gaeta, "Broad-band optical parametric gain on a silicon photonic chip," Nature 441, 960-962 (2006). [CrossRef] [PubMed]
  29. J. Hansryd, A. Andrekson, M. Westlund, J. Li, and P. Hedekvist, "Fiber-based optical parametric amplifiers and their applications," IEEE J. Sel. Top. Quantum Electron. 8, 506 (2002).
  30. A. C. Turner, M. A. Foster, A. L. Gaeta, and M. Lipson, "Ultra-low power parametric frequency conversion in a silicon microring resonator," Opt. Express 16, 4881-4887 (2008).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited