OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 16, Iss. 21 — Oct. 13, 2008
  • pp: 16774–16797

Polarization-independent amplification and frequency conversion in strongly-birefringent fibers

C. J. McKinstrie and C. Xie  »View Author Affiliations


Optics Express, Vol. 16, Issue 21, pp. 16774-16797 (2008)
http://dx.doi.org/10.1364/OE.16.016774


View Full Text Article

Enhanced HTML    Acrobat PDF (749 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The inverse modulation interaction is a degenerate four-wave mixing process in which two strong pumps drive a weak signal, whose frequency is the average of the pump frequencies. Theoretical analyses and numerical simulations of this process are made for wave frequencies that are near the zero-dispersion frequency of a fiber, in which case dispersion is unimportant, and wave frequencies that are far from the zero-dispersion frequency, in which case dispersion is important. The results show that the inverse modulation interaction in a strongly-birefringent fiber amplifies a linearly-polarized signal by an amount that depends on its phase angle, but not its polarization angle. Phase conjugation and Bragg scattering are nondegenerate four-wave mixing processes in which two strong pumps drive a weak signal and a weak idler. Studies show that phase conjugation and Bragg scattering in strongly-birefringent fibers produce polarization-independent phase-insensitive amplification and frequency conversion, respectively.

© 2008 Optical Society of America

OCIS Codes
(060.2320) Fiber optics and optical communications : Fiber optics amplifiers and oscillators
(190.4380) Nonlinear optics : Nonlinear optics, four-wave mixing

ToC Category:
Fiber Optics and Optical Communications

History
Original Manuscript: June 11, 2008
Revised Manuscript: August 27, 2008
Manuscript Accepted: September 23, 2008
Published: October 7, 2008

Citation
C. J. McKinstrie and C. Xie, "Polarization-independent amplification and frequency conversion in strongly-birefringent fibers," Opt. Express 16, 16774-16797 (2008)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-21-16774


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. Hansryd, P. A. Andrekson, M. Westlund, J. Li and P. O. Hedekvist, "Fiber-based optical parametric amplifiers and their applications," J. Sel. Top. Quantum Electron. 8, 506-520 (2002). [CrossRef]
  2. S. Radic and C. J. McKinstrie, "Two-pump fiber parametric amplifiers," Opt. Fiber Technol. 9, 7-23 (2003). [CrossRef]
  3. C. J. McKinstrie, S. Radic and A. H. Gnauck, "All-optical signal processing by fiber-based parametric devices," Opt. Photonics News 18, 34-40 (2007). [CrossRef]
  4. C. J. McKinstrie, S. Radic and C. Xie, "Parametric instabilities driven by orthogonal pump waves in birefringent fibers," Opt. Express 11, 2619-2633 (2003). [CrossRef] [PubMed]
  5. C. J. McKinstrie, H. Kogelnik, R. M. Jopson, S. Radic and A. V. Kanaev, "Four-wave mixing in fibers with random birefringence," Opt. Express 12, 2033-2055 (2004). [CrossRef] [PubMed]
  6. C. J. McKinstrie, H. Kogelnik and L. Schenato, "Four-wave mixing in a rapidly-spun fiber," Opt. Express 14, 8516-8534 (2006). [CrossRef] [PubMed]
  7. T. Hasegawa, K. Inoue and K. Oda, "Polarization independent frequency conversion by fiber four-wave mixing with a polarization diversity technique," IEEE Photon. Technol. Lett. 5, 947-949 (1993). [CrossRef]
  8. K. K. Chow, C. Shu, C. Lin and A. Bjarklev, "Polarization-insensitive widely tunable wavelength converter based on four-wave mixing in a dispersion-flattened nonlinear photonic crystal fiber," IEEE Photon. Technol. Lett. 17, 624-626 (2005). [CrossRef]
  9. Z. Wang, N. Deng, C. Lin and C. K. Chan, "Polarization-insensitive widely tunable wavelength conversion based on four-wave mixing using dispersion-flatened high-nonlinearity photonic crystal fiber with residual birefringence," ECOC 2006, paper We3.P.18.
  10. A. S. Lenihan and G. M. Carter, "Polarization-insensitive wavelength conversion at 40 Gb/s using birefringent nonlinear fiber," CLEO 2007, paper CThAA2.
  11. R. H. Stolen, M. A. Bosch and C. Lin, "Phase matching in birefringent fibers," Opt. Lett. 6, 213-215 (1981). [CrossRef] [PubMed]
  12. C. J. McKinstrie and S. Radic, "Phase-sensitive amplification in a fiber," Opt. Express 12, 4973-4979 (2004). [CrossRef] [PubMed]
  13. C. J. McKinstrie, R. O. Moore, S. Radic and R. Jiang, "Phase-sensitive amplification of chirped optical pulses in fibers," Opt. Express 15, 3737-3758 (2007). [CrossRef] [PubMed]
  14. C. J. McKinstrie and M. G. Raymer, "Four-wave-mixing cascades near the zero-dispersion frequency," Opt. Express 14, 9600-9610 (2006). [CrossRef] [PubMed]
  15. C. J. McKinstrie, S. Radic, M. G. Raymer and L. Schenato, "Unimpaired phase-sensitive amplification by vector four-wave mixing near the zero-dispersion frequency," Opt. Express 15, 2178-2189 (2007). [CrossRef] [PubMed]
  16. K. Croussore and G. Li, "Phase regeneration of NRZ-DPSK signals based on symmetric-pump phase-sensitive amplification," IEEE Photon. Technol. Lett. 19, 864-866 (2007). [CrossRef]
  17. C. J. McKinstrie, S. Radic and A. R. Chraplyvy, "Parametric amplifiers driven by two pump waves," IEEE J. Sel. Top. Quantum Electron.  8, 538-547 and 956 (2002). [CrossRef]
  18. C. R. Menyuk, "Nonlinear pulse propagation in birefringent optical fibers," IEEE J. Quantum Electron. 23, 174-176 (1987). [CrossRef]
  19. C. J. McKinstrie, H. Kogelnik, G. G. Luther and L. Schenato, "Stokes-space derivations of generalized Schr¨odinger equations for wave propagation in various fibers," Opt. Express 15, 10964-10983 (2007). [CrossRef] [PubMed]
  20. G. B. Whitham, Linear and Nonlinear Waves (Wiley, 1974).
  21. M. Karlsson, "Four-wave mixing in fibers with randomly varying zero-dispersion wavelength," J. Opt. Soc. Am. B 15, 2269-2275 (1998). [CrossRef]
  22. J. Rothenberg, "Modulational instability for normal dispersion," Phys. Rev. A 42, 682-685 (1990). [CrossRef] [PubMed]
  23. P. D. Drummond, T. A. B. Kennedy, J. M. Dudley, R. Leonhardt and J. D. Harvey, "Cross-phase modulational instability in high-birefringence fibers," Opt. Commun. 78, 137-142 (1990). [CrossRef]
  24. C. J. McKinstrie and S. Radic, "Parametric amplifiers driven by two pumps with dissimilar frequencies," Opt. Lett. 27, 1138-1140 (2002). [CrossRef]
  25. C. J. McKinstrie, J. D. Harvey, S. Radic and M. G. Raymer, "Translation of quantum states by four-wave mixing in fibers," Opt. Express 13, 9131-9142 (2005). [CrossRef] [PubMed]
  26. C. J. McKinstrie, S. Radic and C. Xie, "Phase conjugation driven by orthogonal pump waves in birefringent fibers," J. Opt. Soc. Am. B 20, 1437-1446 (2003). [CrossRef]
  27. R. Tang, P. Devgan, P. L. Voss, V. S. Grigoryan and P. Kumar, "In-line frequency-nondegenerate phase-sensitive fibre parametric amplifer for fibre-optic communication," IEEE Photon. Technol. Lett. 17, 1845-1847 (2005). [CrossRef]
  28. R. Tang, J. Lasri, P. S. Devgan, V. Grigoryan, P. Kumar and M. Vasilyev, "Gain characteristics of a frequency nondegenerate phase-sensitive fiber-optic parametric amplifier with phase self-stabilized input," Opt. Express 13, 10483-10493 (2005). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited