OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 16, Iss. 21 — Oct. 13, 2008
  • pp: 16806–16824

High-speed low-power photonic transistor devices based on optically-controlled gain or absorption to affect optical interference

Yingyan Huang and Seng-Tiong Ho  »View Author Affiliations


Optics Express, Vol. 16, Issue 21, pp. 16806-16824 (2008)
http://dx.doi.org/10.1364/OE.16.016806


View Full Text Article

Enhanced HTML    Acrobat PDF (1190 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We show that a photonic transistor device can be realized via the manipulation of optical interference by optically controlled gain or absorption in novel ways, resulting in efficient transistor signal gain and switching action. Exemplary devices illustrate two complementary device types with high operating speed, µm size, µW switching power, and switching gain. They can act in tandem to provide a wide variety of operations including wavelength conversion, pulse regeneration, and logical operations. These devices could have a Transistor Figure-of-Merits >105 times higher than current χ(3) approaches and are highly attractive.

© 2008 Optical Society of America

OCIS Codes
(230.1150) Optical devices : All-optical devices
(230.4320) Optical devices : Nonlinear optical devices

ToC Category:
Optical Devices

History
Original Manuscript: July 9, 2008
Revised Manuscript: September 28, 2008
Manuscript Accepted: October 3, 2008
Published: October 7, 2008

Citation
Yingyan Huang and Seng-Tiong Ho, "High-speed low-power photonic transistor devices based on optically-controlled gain or absorption to affect optical interference," Opt. Express 16, 16806-16824 (2008)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-21-16806


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. G. I. Papadimitriou, C. Papazoglou, and A. S. Pomportsis, "Optical Switching: Switch Fabrics, Techniques, and Architectures," J. Lightwave Technol. 21, 384-403 (2003). [CrossRef]
  2. D. Cotter,  et al., "Nonlinear Optics for High-Speed Digital Information Processing," Science 286, 1523-1528 (1999). [CrossRef] [PubMed]
  3. S. T. Ho, C. E. Soccolich, W. S. Hobson, A. F. J. Levi, M. N. Islam, and R. E. Slusher, "Large Nonlinear Phase Shifts in Low-Loss AlXGa1-XAs Waveguides Near Half-Gap," Appl. Phys. Lett. 59, 2558-2560 (1991). [CrossRef]
  4. R. P. Espindola, M. K. Udo, D. Y. Chu, S. L. Wu, R. C. Tiberio, P. F. Chapman, D. Cohen, and S. T. Ho, "All-Optical Switching with Low-Peak Power in Microfabricated AlGaAs Waveguides," IEEE Photon. Technol. Lett. 7, 641-643 (1995). [CrossRef]
  5. J. P. Zhang, D. Y. Chu, S. L. Wu, W. G. Bi, R. C. Tiberio, C. W. Tu, and S. T. Ho, "Photonic-Wire Laser," Phys. Rev. Lett. 75, 2678-2681 (1995). [CrossRef] [PubMed]
  6. C. Langrock, S. Kumar, J. E. McGeehan, A. E. Willner, and M. M. Fejer, "All-Optical Signal Processing Using �?(2) Nonlinearities in Guided-Wave Devices," J. Lightwave Technol. 24, 2579-2601 (2006). [CrossRef]
  7. Y.-H. Kao, T. J. Xia, M. N. Islam, and G. Raybon, "Limitations on ultrafast optical switching in a semiconductor laser amplifier operating at transparency current," J. Appl. Phys. 86, 4740-4747 (1999). [CrossRef]
  8. B. Dagens, C. Janz, D. Leclerc, V. Verdrager, F. Poingt, I. Guillemot, F. Gaborit, and D. Ottenwälder, "Design Optimization of All-Active Mach-Zehnder Wavelength Converters," IEEE Photon. Technol. Lett. 11, 424-426 (1999). [CrossRef]
  9. M. L. Masanovi�?, V. Lal, J. S. Barton, E. J. Skogen, L. A. Coldren, and D. J. Blumenthal, "Monolithically Integrated Mach-Zehnder Interferometer Wavelength Converter and Widely Tunable Laser in InP," IEEE Photon. Technol. Lett. 15, 1117-1119 (2003). [CrossRef]
  10. R. W. Boyd, Nonlinear Optics, (Academic Press, San Diego, 2003).
  11. S. M. Jensen, "The nonlinear coherent coupler," IEEE J. Quantum Electron. QE-18, 1568-1571 (1982).
  12. Y. Huang and S. T. Ho, "A numerically efficient semiconductor model with Fermi-Dirac thermalization dynamics (band-filling) for FDTD simulation of optoelectronic and photonic devices," Proceedings of the 2005 International Conference on Quantum Electronics & Lasers Science, Baltimore, QTuD7 (2005).
  13. Y. Huang and S. T. Ho, "Computational model of solid-state, molecular, or atomic media for FDTD simulation based on a multi-level multi-electron system governed by Pauli exclusion and Fermi-Dirac thermalization with application to semiconductor photonics," Opt. Express 14, 3569 (2006). [CrossRef] [PubMed]
  14. Y. Huang, "Simulation and Experimental Realization of Novel High Efficiency All-Optical and Electrically Pumped Nanophotonic Devices," PhD dissertation, Northwestern University, Evanston, IL, USA, 2007.
  15. L. A. Coldren and S. W. Corzine, Diode Lasers and Photonic Integrated Circuits, (Wiley, John & Sons, 1995).
  16. K. Mistry,  et al., "A 45nm Logic Technology with High-k+Metal Gate Transistors, Strained Silicon, 9 Cu Interconnect Layers, 193nm Dry Patterning, and 100% Pb-free Packaging," Electron Devices Meeting, 2007. IEDM 2007.
  17. B. Mason, G. Fish, S. DenBaars, and L. Coldren, "Ridge Waveguide Sampled Grating DBR Lasers with 22-nm Quasi-Continuous Tuning Range," IEEE Photon. Technol. Lett. 10, 1211-1213 1998. [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited