OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 16, Iss. 21 — Oct. 13, 2008
  • pp: 16895–16902

Quantitative verification of ab initio self-consistent laser theory

Li Ge, Robert J. Tandy, A. Douglas Stone, and Hakan E. Türeci  »View Author Affiliations


Optics Express, Vol. 16, Issue 21, pp. 16895-16902 (2008)
http://dx.doi.org/10.1364/OE.16.016895


View Full Text Article

Enhanced HTML    Acrobat PDF (1246 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We generalize and test the recent “ab initio” self-consistent (AISC) time-independent semiclassical laser theory. This self-consistent formalism generates all the stationary lasing properties in the multimode regime (frequencies, thresholds, internal and external fields, output power and emission pattern) from simple inputs: the dielectric function of the passive cavity, the atomic transition frequency, and the transverse relaxation time of the lasing transition. We find that the theory gives excellent quantitative agreement with full time-dependent simulations of the Maxwell-Bloch equations after it has been generalized to drop the slowly-varying envelope approximation. The theory is infinite order in the non-linear hole-burning interaction; the widely used third order approximation is shown to fail badly.

© 2008 Optical Society of America

OCIS Codes
(140.3430) Lasers and laser optics : Laser theory

ToC Category:
Lasers and Laser Optics

History
Original Manuscript: August 11, 2008
Revised Manuscript: September 23, 2008
Manuscript Accepted: September 28, 2008
Published: October 8, 2008

Citation
Li Ge, Robert J. Tandy, A. D. Stone, and Hakan E. Türeci, "Quantitative verification of ab initio self-consistent laser theory," Opt. Express 16, 16895-16902 (2008)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-21-16895


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. H. Haken, Light: Laser Dynamics Vol. 2 (North-Holland Phys. Publishing, 1985).
  2. H. E. Türeci, A. D. Stone, and B. Collier, "Self-consistent multimode lasing theory for complex or random lasing media," Phys. Rev. A 74, 043822 (2006). [CrossRef]
  3. H. E. Türeci, A. D. Stone, and L. Ge, "Theory of the spatial structure of nonlinear lasing modes," Phys. Rev. A 76, 013813 (2007). [CrossRef]
  4. H. E. Türeci, L. Ge, S. Rotter, and A. D. Stone, "Strong interactions in multimode random lasers," Science 320, 643-646 (2008). [CrossRef] [PubMed]
  5. C. Gmachl, F. Capasso, E. E. Narimanov, J. U. Nöckel, A. D. Stone, J. Faist, D. L. Sivco, and A. Y. Cho, "Highpower directional emission from microlasers with chaotic resonators," Science 280, 1556-1564 (1998). [CrossRef] [PubMed]
  6. O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O�??Brien, P. D. Dapkus, and I. Kim, "Two-dimensional photonic band-gap defect mode laser," Science 284, 1819-1821 (1999). [CrossRef] [PubMed]
  7. H. Cao, "Review on latest developments in random lasers with coherent feedback," J. Phys. A 38, 10497-10535 (2005). [CrossRef]
  8. H. Haken and H. Sauermann, "Nonlinear interaction of laser modes," Z. Phys. 173, 261-275 (1963). [CrossRef]
  9. H. Fu and H. Haken, "Multifrequency operations in a short-cavity standing-wave laser," Phys. Rev. A 43, 2446-2454 (1991). [CrossRef] [PubMed]
  10. B. Bidégaray, "Time discretizations for Maxwell-Bloch equations," Numer. Meth. Partial Differential Equations 19, 284-300 (2003). [CrossRef]
  11. T. Harayama, P. Davis, and K. S. Ikeda, "Stable oscillations of a spatially chaotic wave function in a microstadium Laser," Phys. Rev. Lett. 90, 063901 (2003). [CrossRef] [PubMed]
  12. H. E. Türeci and A. D. Stone, "Mode competition and output power in regular and chaotic dielectric cavity lasers," Proc. SPIE 5708, 255-270 (2005). [CrossRef]
  13. L. Ge, H. E. Türeci, and A. D. Stone (unpublished).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2. Fig. 3.
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited