OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 16, Iss. 21 — Oct. 13, 2008
  • pp: 16903–16915

Resonant tunneling of surface plasmon polariton in the plasmonic nano-cavity

Junghyun Park, Hwi Kim, Il-Min Lee, Seyoon Kim, Jaehoon Jung, and Byoungho Lee  »View Author Affiliations


Optics Express, Vol. 16, Issue 21, pp. 16903-16915 (2008)
http://dx.doi.org/10.1364/OE.16.016903


View Full Text Article

Enhanced HTML    Acrobat PDF (467 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We investigate the reflection and transmission characteristics of the low-dielectric constant cut off barrier in the metal-insulator-metal (MIM) waveguide and propose a novel plasmonic nano-cavity made of two cut off barriers and the waveguide between them. It is shown that the anti-symmetric mode in the MIM waveguide with the core of the low dielectric constant below the specific value cannot be supported and this region can be regarded as a cut off barrier with high stability. The phase shift due to the reflection at the finite-length cut off barrier is calculated and the design scheme of the cavity length for the resonant tunneling is presented. The transmission spectra through the proposed nano-cavity are also discussed.

© 2008 Optical Society of America

OCIS Codes
(230.7390) Optical devices : Waveguides, planar
(240.6680) Optics at surfaces : Surface plasmons
(140.3948) Lasers and laser optics : Microcavity devices

ToC Category:
Optics at Surfaces

History
Original Manuscript: August 18, 2008
Revised Manuscript: October 3, 2008
Manuscript Accepted: October 4, 2008
Published: October 8, 2008

Citation
Junghyun Park, Hwi Kim, Il-Min Lee, Seyoon Kim, Jaehoon Jung, and Byoungho Lee, "Resonant tunneling of surface plasmon polariton in the plasmonic nano-cavity," Opt. Express 16, 16903-16915 (2008)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-21-16903


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. H. Rather, Surface Plasmons (Springer-Verlag, Berlin, 1988).
  2. W. L. Barnes, A. Dereux, and T. W. Ebbesen, "Surface plasmon subwavelength optics," Nature 424, 824-830 (2003). [CrossRef] [PubMed]
  3. S. Kim, H. Kim, Y. Lim, and B. Lee, "Off-axis directional beaming of optical field diffracted by a single subwavelength metal slit with asymmetric dielectric surface gratings," Appl. Phys. Lett. 90, 051113 (2007). [CrossRef]
  4. H. Kim, J. Hahn, and B. Lee, "Focusing properties of surface plasmon polariton floating dielectric lenses," Opt. Express 16, 3049-3057 (2008). [CrossRef] [PubMed]
  5. Y. Lim, S. Kim, H. Kim, J. Jung, and B. Lee, "Interference of surface plasmon waves and plasmon coupled waveguide modes for the pattering of thin film," IEEE J. Quant. Electron. 44, 305-311 (2008). [CrossRef]
  6. I.-M. Lee, J. Jung, J. Park, H. Kim, and B. Lee, "Dispersion characteristics of channel plasmon polariton waveguides with step-trench-type grooves," Opt. Express 15, 16596-16603 (2007). [CrossRef] [PubMed]
  7. S. Sidorenko and O. J. F. Martin, "Resonant tunneling of surface plasmon-polaritons," Opt. Express 15, 6380-6388 (2007). [CrossRef] [PubMed]
  8. M. I. Stockman, "Slow propagation, anomalous absorption, and total external reflection of surface plasmon polaritons in nanolayer systems," Nano Lett. 6, 2604-2608 (2006). [CrossRef] [PubMed]
  9. S. I. Bozhevolnyi and T. Søndergaard, "General properties of slow-plasmon resonant nanostructures: nano-antennas and resonators," Opt. Express 15, 10869-10877 (2007). [CrossRef] [PubMed]
  10. G. D. Valle, T. Søndergaard, and S. I. Bozhevolnyi, "Plasmon-polariton nano-strip resonators: from visible to infra-red," Opt. Express 16, 6867-6876 (2008). [CrossRef] [PubMed]
  11. H. T. Miyazaki and Y. Kurokawa, "Squeezing visible light waves into a 3-nm-thick and 55-nm-long plasmon cavity," Phys. Rev. Lett. 96, 097401 (2006). [CrossRef] [PubMed]
  12. Y. Kurokawa and H. T. Miyazaki, "Metal-insulator-metal plasmon nanocavities: analysis of optical properties," Phys. Rev. B 75, 035411 (2007). [CrossRef]
  13. H. T. Miyazaki and Y. Kurokawa, "Controlled plasmon resonance in closed metal/insulator/metal nanocavities," Appl. Phys. Lett. 89, 211126 (2006). [CrossRef]
  14. J. A. Dionne, L. A. Sweatlock, and H. A. Atwater, "Plasmon slot waveguides: Towards chip-scale propagation with subwavelength-scale localization," Phys. Rev. B 73, 035407 (2006). [CrossRef]
  15. R. Zia, M. D. Selker, P. B. Catrysse, and M. Brongersma, "Geometries and materials for subwavelength surface plasmon modes," J. Opt. Soc. Am. A 21, 2442-2446 (2004). [CrossRef]
  16. E. N. Economou, "Surface plasmons in thin films," Phys. Rev. 182, 539-554 (1969). [CrossRef]
  17. J. J. Burke, G. I. Stegeman, and T. Tamir, "Surface-polariton-like waves guided by thin, lossy metal films," Phys. Rev. B 33, 5186-5201 (1986). [CrossRef]
  18. P. Berini, "Plasmon-polariton waves guided by thin lossy metal films of finite width: bound modes of symmetric structures," Phys. Rev. B 61, 10484-10503 (2000). [CrossRef]
  19. J. A. Dionne, L. A. Sweatlock, and H. A. Atwater, "Planar metal plasmon waveguides: Frequency-dependent dispersion, propagation, localization, and loss beyond the free electron model," Phys. Rev. B 72, 075405 (2005). [CrossRef]
  20. J. Park and B. Lee, "An approximate formula of the effective refractive index of the metal-insulator-metal surface plasmon polariton waveguide in the infrared region," Jpn. J. Appl. Phys. (accepted for publication).
  21. J. A. Dionne, H. J. Lezec, and H. A. Atwater, "Highly confined photon transport in subwavelength metallic slot waveguides," Nano Lett. 6, 1928-1932 (2006). [CrossRef] [PubMed]
  22. M. J. Preiner, K. T. Shimizu, J. S. White, and N. A. Melosh, "Efficient optical coupling into metal-insulator-metal plasmon mode with subwavelength diffraction gratings," Appl. Phys. Lett. 92, 113109 (2008). [CrossRef]
  23. B. Wang and G. P. Wang, "Plasmon Bragg reflectors and nanocavities on flat metallic surfaces," Appl. Phys. Lett. 87, 013107 (2005). [CrossRef]
  24. A. Hosseini and Y. Massoud, "A low-loss metal-insulator-metal plasmonic Bragg reflector," Opt. Express 14, 11318-11323 (2006). [CrossRef]
  25. Z. Han, E. Forsberg, and S. He, "Surface plasmon Bragg gratings formed in metal-insulator-metal waveguides," IEEE Photon. Technol. Lett. 19, 91-93 (2007). [CrossRef]
  26. J. Park, H. Kim, and B. Lee, "High order plasmonic Bragg reflection in the metal-insulator-metal waveguide Bragg grating," Opt. Express 16, 413-425 (2008). [CrossRef] [PubMed]
  27. B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics, 2nd ed. (Wiley Intersceince, Hoboken, NJ, 2007).
  28. H. J. Lezec, J. A. Dionne, and H. A. Atwater, "Negative refraction at visible frequencies," Science 316, 430-432 (2007). [CrossRef] [PubMed]
  29. M. G. Moharam and T. K. Gaylord, "Rigorous coupled-wave analysis of planar-grating diffraction," J. Opt. Soc. Am. A 71, 811-818 (1981). [CrossRef]
  30. M. G. Moharam, E. B. Grann, and D. A. Pommet, "Formulation for stable and efficient implementation of the rigorous coupled-wave analysis of binary gratings," J. Opt. Soc. Am. A 12, 1067-1076 (1995). [CrossRef]
  31. P. Lalanne, "Improved formulation of the coupled-wave method for two-dimensional gratings," J. Opt. Soc. Am. A 14, 1592-1598 (1997). [CrossRef]
  32. H. Kim, I.-M. Lee, and B. Lee, "Extended scattering-matrix method for efficient full parallel implementation of rigorous coupled-wave analysis," J. Opt. Soc. Am. A 24, 2313-2327 (2007). [CrossRef]
  33. K.-Y. Kim, "Photon tunneling in composite layers of negative- and positive-index media," Phys. Rev. E 70, 047603 (2004) [CrossRef]
  34. K.-Y. Kim and B. Lee, "Complete tunneling of light through impedance-mismatched barrier layers," Phys. Rev. A 77, 023822 (2008).
  35. J. Park, K.-Y. Kim, and B. Lee, "Complete tunneling of light through a composite barrier consisting of multiple layers," (in submission).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited