OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 16, Iss. 21 — Oct. 13, 2008
  • pp: 16916–16922

Photocurrent enhancement of SnO2 nanowires through Au-nanoparticles decoration

Cheng-Hua Lin, Tzung-Te Chen, and Yang-Fang Chen  »View Author Affiliations

Optics Express, Vol. 16, Issue 21, pp. 16916-16922 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (578 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



It is found that the sensitivity of photoresponse of SnO2 nanowires can be enhanced by metallic particles decoration. The underlying mechanism is attributed to the formation of the Schottky junction on nanowires surface in the vicinity of metallic nanoparticles. The increment in the barrier height and width of space charge region due to the existence of Schottky junction increases the surface electric field and enhances the spatial separation effect, which then prolongs the lifetime of photoinduced electron and consequently increases the photoresponse gain. The result shown here provides an alternative route for enhancing the photoresponse of semiconductor nanostructures, which should be useful for creating highly sensitive photodetectors.

© 2008 Optical Society of America

OCIS Codes
(160.3900) Materials : Metals
(230.5160) Optical devices : Photodetectors
(260.5150) Physical optics : Photoconductivity
(160.4236) Materials : Nanomaterials

ToC Category:
Optical Devices

Original Manuscript: August 20, 2008
Revised Manuscript: September 11, 2008
Manuscript Accepted: September 11, 2008
Published: October 8, 2008

Cheng-Hua Lin, Tzung-Te Chen, and Yang-Fang Chen, "Photocurrent enhancement of SnO2 nanowires through Au-nanoparticles decoration," Opt. Express 16, 16916-16922 (2008)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. S. Dmitriev, Y. Lilach, B. Button, M. Moskovits, and A. Kolmakov, "Nanoengineered chemiresistors: the interplay between electron transport and chemisorption properties of morphologically encoded SnO2 nanowires," Nanotechnology,  18,055707-055712 (2007). [CrossRef]
  2. Z. Liu, D. Zhang, S. Han, C. Li, T. Tang, W. Jin, X. Liu, B. Lei, and C. Zhou, "Laser Ablation Synthesis and Electron Transport Studies of Tin Oxide Nanowires," Adv. Mater. (Weinheim, Ger.) 15,1754-1757 (2003). [CrossRef]
  3. Y. K. Liu, C. L. Zheng, W. Z. Wang, C. R. Yin, and G. H. Wang, "Synthesis and Characteristics of Rutile SnO2 Nanorods," Adv. Mater. (Weinheim, Ger.) 13, 1883-1887 (2001). [CrossRef]
  4. B. Wang, Y. H. Yang, C. X. Wang, N. S. Xu, and G. W. Yang, "Field emission and photoluminescence of SnO2 nanograss," J. Appl. Phys. 98, 124303-1-12430-4 (2005). [CrossRef]
  5. B. Wang, Y. H. Yang, C. X. Wang, and G. W. Yang, "Nanostructures and self-catalyzed growth of SnO2," J. Appl. Phys. 98, 073520-1-073520-5 (2005).
  6. S. Luo, P. K. Chu, W. Liu, M. Zhang, and C. Lin, "Origin of low-temperature photoluminescence from SnO2 nanowires fabricated by thermal evaporation and annealed in different ambients," Appl. Phys. Lett. 88, 183112-1-183112-3 (2006). [CrossRef]
  7. L. L. Fields, J. P. Zheng, Y. Cheng, and P. Xiong, "Room-temperature low-power hydrogen sensor based on a single tin dioxide nanobelt," Appl. Phys. Lett. 88, 263102-1-263102-3 (2006). [CrossRef]
  8. A. Yang, X. Tao, R. Wang, S. Lee, and C. Surya, "Room temperature gas sensing properties of SnO2/multiwall-carbon-nanotube composite nanofibers," Appl. Phys. Lett. 91,133110-1-133110-3 (2007).
  9. S. Choudhury, C. A. Betty, K. G. Girija, and S. K. Kulshreshtha, "Room temperature gas sensitivity of ultrathin SnO2 films prepared from Langmuir-Blodgett film precursors," Appl. Phys. Lett. 89, 071914-1-071914-3 (2006). [CrossRef]
  10. A. Kolmakov, D. O. Klenov, Y. Lilach, S. Stemmer, and M. Moskovits, "Enhanced Gas Sensing by Individual SnO2 Nanowires and Nanobelts Functionalized with Pd Catalyst Particles," Nano. Lett. 5, 667-673 (2005). [CrossRef] [PubMed]
  11. X. H. Chen and M. Moskovits, "Observing Catalysis through the Agency of the Participating Electrons: Surface -Chemistry-Induced Current Changes in a Tin Oxide Nanowire Decorated with Silver," Nano. Lett. 7, 807-812 (2007). [CrossRef] [PubMed]
  12. C. Y. Chang, G. C. Chi, W. M. Wang, L. C. Chen, K. H. Chen, F. Ren, and S. J. Pearton, "Electrical Transport Properties of Single GaN and InN Nanowires," J. Electro. Mater. 35, 738-743 (2006). [CrossRef]
  13. R. S. Chen, H. Y. Chen, C. Y. Lu, K. H. Chen, C. P. Chen, L. C. Chen, and Y. J. Yang, "Ultrahigh photocurrent gain in m-axial GaN nanowires," Appl. Phys. Lett. 91, 223106-1-223106-3 (2007).
  14. X. T. Zhou, F. Heigl, M. W. Murphy, T. K. Sham, T. Regier, I. Coulthard, and R. I. R. Blyth, "Time-resolved x-ray excited optical luminescence from SnO2 nanoribbons: Direct evidence for the origin of the blue luminescence and the role of surface states," Appl. Phys. Lett. 89, 213109-1-213109-3 (2006). [CrossRef]
  15. J. A. Garrido, E. Monroy, I. Izpura, and E. Muñoz, "Photoconductive gain modelling of GaN photodetectors," Semicond. Sci. Technol. 13, 563-568 (1998). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited