OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 16, Iss. 21 — Oct. 13, 2008
  • pp: 16941–16949

Graded negative index lens by photonic crystals

Qi Wu, John M. Gibbons, and Wounjhang Park  »View Author Affiliations

Optics Express, Vol. 16, Issue 21, pp. 16941-16949 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (616 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Numerical studies on a graded negative index lens made by a slab of graded photonic crystal (PC) are reported. The graded negative index lens is capable of focusing plane waves and can also be made highly insensitive to frequency, enabling broadband negative index imaging. We provide a simple model for the graded PC lens and predict its superior focusing properties such as low chromatic aberrations and broadband operation. Those properties were also confirmed and analyzed by the finite-difference time-domain simulations. We believe the negative index graded PCs will expand the utility of PC lenses and enable new applications in optoelectronic systems.

© 2008 Optical Society of America

OCIS Codes
(110.2760) Imaging systems : Gradient-index lenses
(130.3120) Integrated optics : Integrated optics devices
(230.5298) Optical devices : Photonic crystals

ToC Category:
Photonic Crystals

Original Manuscript: September 11, 2008
Revised Manuscript: October 6, 2008
Manuscript Accepted: October 6, 2008
Published: October 8, 2008

Qi Wu, John M. Gibbons, and Wounjhang Park, "Graded negative index lens by photonic crystals," Opt. Express 16, 16941-16949 (2008)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. A. Shelby, D. R. Smith, and S. Schultz, "Experimental verification of a negative index of refraction," Science 292, 77-79 (2000). [CrossRef]
  2. J. B. Pendry, "Negative refraction makes a perfect lens," Phys. Rev. Lett. 85, 3966-3969 (2000). [CrossRef] [PubMed]
  3. N. Fang, H. Lee, C. Sun, and X. Zhang, "Sub-diffractionlimited optical imaging with silver superlens," Science 308, 534-537 (2006). [CrossRef]
  4. C. Luo, S. G. Johnson, J. D. Joannopoulos, and J. B. Pendry, "All-angle negative refraction without negative effective index," Phys. Rev. B 65, 201104 (1-4) (2002). [CrossRef]
  5. P. V. Parimi, W. T. Lu, P. Vodo, and S. Sridhar, "Imaging by flat lens using negative refraction," Nature 426, 404 (2003). [CrossRef] [PubMed]
  6. E. Schonbrun, T. Yamashita, W. Park, and C. J. Summers, "Negative-index imaging by an index-matched photonic crystal slab," Phys. Rev. B 73, 195117 (1-6) (2006). [CrossRef]
  7. E. Schonbrun, Q. Wu, W. Park, T, Yamashita, C. J. Summers, M. Abashin and Y. Fainman, "Wave front evolution of negatively refracted waves in a photonic crystal," Appl. Phys. Lett. 90, 041113 (1-3) (2007). [CrossRef]
  8. C. G. Parazzoli, R. B. Greegor, J. A. Nielsen, M. A. Thompson, K. Li, A. M. Vetter and M. H. Tanielian, "Performance of a negative index of refraction lens, " Appl. Phys. Lett. 84, 3232-3234 (2004). [CrossRef]
  9. B. D. F. Casse, W. T. Lu, Y. J. Huang and S. Sridhar, "Nano-optical microlens with ultrashort focal length using negative refraction," Appl. Phys. Lett. 93, 053111 (1-3) (2008). [CrossRef]
  10. Q. Wu, E. Schonbrun, and W. Park, "Image inversion and magnification by negative index prisms," J. Opt. Soc. Am. A 24, A45-A51 (2007). [CrossRef]
  11. D. R. Smith, J. J. Mock, A. F. Starr, and D. Schurig, "Gradient index metamaterials," Phys. Rev. E 71, 036609 (1-4) (2005). [CrossRef]
  12. T. Driscoll, D. N. Basov, A. F. Starr, P. M. Rye, S. Nemat-Nasser, D. Schurig, and D. R. Smith, "Free-spacemicrowave focusing by a negative-index gradient lens," Appl. Phys. Lett.  88, 081101 (1-3) (2006). [CrossRef]
  13. R. B. Greegor, C. G. Parazzoli, J. A. Nielsen, M. A. Thompson, M. H. Tanielian, and D. R. Smith, "Simulation and testing of a gradient negative index of refraction lens," Appl. Phys. Lett. 87, 091114 (1-3) (2005). [CrossRef]
  14. E. Centeno and D. Cassagne, "Graded photonic crystals," Opt. Lett. 74, 2278-2280 (2005). [CrossRef]
  15. Q1. E. Centeno, D. Cassagne, and J. P. Albert, "Mirage and superbending effect in two-dimensional graded photonic crystals," Phys. Rev. B 73, 235119-235119 (2006). [CrossRef]
  16. F. S. Roux and I. De Leon, "Planar photonic crystal gradient index lens, simulated with a finite difference time domain method," Phys. Rev. B 74, 113103 (1-4) (2006). [CrossRef]
  17. H. Kurt and D. S. Citrin, "Graded index photonic crystals," Opt. Express 15, 1240-1253 (2007). [CrossRef] [PubMed]
  18. H. Chien and C. Chen, "Focusing of electromagnetic waves by periodic arrays of air holes with gradually varying radii," Opt. Express 14, 10759-10764 (2006). [CrossRef] [PubMed]
  19. Q. Wu, E. Schonbrun, and W. Park, "Tunable superlensing by a mechanically controlled photonic crystal," J. Opt. Soc. Am. B 23, 479-484 (2006). [CrossRef]
  20. S. Sinzinger and J. Jahns, Microoptics, 2nd ed. (Wiley, New York, 2003). [CrossRef]
  21. A. O. Pinchuk and G. C. Schatz, "Metamaterials with gradient negative index of refraction," J. Opt. Soc. Am. A 24, A39-A44 (2007). [CrossRef]
  22. X. Wang, Z. F. Ren, and K. Kempa, "Unrestricted superlensing in a triangular two-dimensional photonic crystal," Opt. Express 12, 2919-2924 (2004). [CrossRef] [PubMed]
  23. M. Notomi, "Theory of light propagation in strongly modulated photonic crystals: refractionlike behavior in the vicinity of the photonic band gap," Phys. Rev. B 62, 10696-10705 (2000). [CrossRef]
  24. A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Boston: Artech House, 2000).
  25. J. P. Berenger, "A perfectly matched layer for the absorption of electromagnetic waves," J. Comput. Phys. 114, 185-200 (1994). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited