OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 16, Iss. 21 — Oct. 13, 2008
  • pp: 16950–16962

Unusual entanglement transformation properties of the quantum radiation through one-dimensional random system containing left-handed-materials

Yunxia Dong and Xiangdong Zhang  »View Author Affiliations

Optics Express, Vol. 16, Issue 21, pp. 16950-16962 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (231 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The quantum radiation through the multilayer structures containing the left-handed materials is investigated based on the Green-function approach to the quantization of the phenomenological Maxwell theory. Emphasis is placed on the effect of randomness on the generation and transmission of entangled-states. It is shown that some unusual properties appear for the present systems in comparison with those of the conventional dielectric structures. The quantum relative entropy is always enhanced with the increase of random degree due to the existence of nonlocalized mode in the present systems, while the maximal entanglement can be observed only at some certain randomness for the conventional dielectric structures. In contrast to exponential decrease in the conventional systems, the entanglement degrades slowly with the increase of disorder and thickness of the sample near the nonlocalized mode after transmission through the present systems. This will benefit the quantum communication for long distances.

© 2008 Optical Society of America

OCIS Codes
(350.3618) Other areas of optics : Left-handed materials
(160.3918) Materials : Metamaterials
(270.5565) Quantum optics : Quantum communications

ToC Category:

Original Manuscript: June 19, 2008
Revised Manuscript: July 24, 2008
Manuscript Accepted: July 24, 2008
Published: October 9, 2008

Yunxia Dong and Xiangdong Zhang, "Unusual entanglement transformation properties of the quantum radiation through one-dimensional random system containing left-handed-materials," Opt. Express 16, 16950-16962 (2008)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. A. Nielsen and I. L. Chuang, "Quantum computation and quantum information," (Cambridge University Press, Cambridge, 2000).
  2. D. Bouwmeester, A. Ekert, and A. Zeilinger, "The physics of quantum information," (Springer, 2000).
  3. A. Ekert, "Quantum cryptography based on Bell�??s theorem," Phys. Rev. Lett. 67, 661 (1991). [CrossRef] [PubMed]
  4. C. H. Bennett, G. Brassard, C. Crepeau, R. Josza, A. Peres, and W. K. Wooters, "Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels," Phys. Rev. Lett. 70, 1895 (1993). [CrossRef] [PubMed]
  5. S. L. Braunstein and H. J. Kimble, "Teleportation of continuous quantum variables," Phys. Rev. Lett. 80, 869 (1998). [CrossRef]
  6. A. Furusawa, J. L. Sørensen, S. L. Braunstein, C. A. Fuchs, H. J. Kimble, and E. S. Polzik, "Unconditional quantum teleportation," Science 282, 706 (1998). [CrossRef] [PubMed]
  7. T. Jennewein, C. Simon, G. Weihs, H. Weinfurter, and A. Zeilinger, "Quantum cryptography with entangled photons," Phys. Rev. Lett. 84, 4729 (2000). [CrossRef] [PubMed]
  8. J. R. Jeffers, N. Imoto, and R. Loudon, "Quantum optics of traveling-wave attenuators and amplifiers," Phys. Rev. A 47, 3346 (1993). [CrossRef] [PubMed]
  9. R. Matloob, R. Loudon, M. Artoni, S. M. Barnett, and J. Jeffers, "Electromagnetic field quantization in amplifying dielectrics," Phys. Rev. A 55, 1623 (1997). [CrossRef]
  10. M. Artoni and R. Loudon, "Quantum theory of optical pulse propagation through an absorbing and dispersive slab," Phys. Rev. A 55, 1347 (1997). [CrossRef]
  11. T. Gruner and D. G. Welsch, "Quantum-optical input-output relations for dispersive and lossy multilayer dielectric plates," Phys. Rev. A 54, 1661 (1996). [CrossRef] [PubMed]
  12. L. Knöll, S. Scheel, E. Schmidt, D. G. Welsch, and A.V. Chizhov, "Quantum-state transformation by dispersive and absorbing four-port devices," Phys. Rev. A 59, 4716 (1999). [CrossRef]
  13. S. Scheel, L. Knöll, T. Opatrný, and D. G. Welsch, "Entanglement transformation at absorbing and amplifying four-port devices," Phys. Rev. A 62, 043803 (2000). [CrossRef]
  14. M. Khanbekyan, L. Knöll, and D. G. Welsch, "Input-output relations at dispersing and absorbing planar multilayers for the quantized electromagnetic field containing evanescent components," Phys. Rev. A 67, 063812 (2003). [CrossRef]
  15. V. M. Agranovich and Y. N. Gartstein, "Spatial dispersion and negative refraction of light," Phys. Usp. 49, 1029 (2006). [CrossRef]
  16. V. G. Veselago, "The electrodynamics of substances with simultaneously negative values of ε and μ," Sov. Phys. Usp. 10, 509 (1968). [CrossRef]
  17. R. A. Shelby, D. R. Smith, and S. Schultz, "Experimental verification of a negative index of refraction," Science 292, 77 (2001). [CrossRef] [PubMed]
  18. J. B. Pendry, "Negative refraction makes a perfect lens," Phys. Rev. Lett. 85, 3966 (2000). [CrossRef] [PubMed]
  19. R. Ruppin, "Extinction properties of a sphere with negative permittivity and permeability," Solid State Commun. 116, 411 (2000). [CrossRef]
  20. H. T. Dung, S. Y. Buhmann, L. Knöll, D. G. Welsch, S. Scheel, and J. Kastel, "Electromagnetic-field quantization and spontaneous decay in left-handed media," Phys. Rev. A 68, 043816 (2003). [CrossRef]
  21. Z. M. Zhang and C. J. Fu, "Unusual photon tunneling in the presence of a layer with a negative refractive index," Appl. Phys. Lett. 80, 1097 (2002). [CrossRef]
  22. R. W. Ziolkowski and E. Heyman, "Wave propagation in media having negative permittivity and permeability," Phys. Rev. E 64, 056625 (2001). [CrossRef]
  23. I. S. Nefedov and S. A. Tretyakov, "Photonic band gap structure containing metamaterial with negative permittivity and permeability," Phys. Rev. E 66, 036611 (2002). [CrossRef]
  24. I. V. Shadrivov, N. A. Zharova, A. A. Zharov, and Y. S. Kivshar, "Defect modes and transmission properties of left-handed bandgap structures," Phys. Rev. E 70, 046615 (2004). [CrossRef]
  25. V. M. Agranovich, Y. R. Shen, R. H. Baughman, and A. A. Zakhidov, "Linear and nonlinear wave propagation in negative refraction metamaterials," Phys. Rev. B 69, 165112 (2004). [CrossRef]
  26. I. V. Shadrivov, A. A. Sukhorukov, and Yu. S. Kivshar, "Beam shaping by a periodic structure with negative refraction," Appl. Phys. Lett. 82, 3820 (2003). [CrossRef]
  27. J. Li, L. Zhou, C. T. Chan, and P. Sheng, "Photonic band gap from a stack of positive and negative index materials," Phys. Rev. Lett. 90, 083901(2003). [CrossRef] [PubMed]
  28. Y. Dong and X. Zhang, "Unusual transmission properties of wave in one-dimensional random system containing left-handed-material," Phys. Lett. A 359, 542 (2006). [CrossRef]
  29. S. M. Barnett and S. J. D. Phoenix, "Entropy as a measure of quantum optical correlation," Phys. Rev. A 40, 2404 (1989). [CrossRef] [PubMed]
  30. V. Vedral, M. B. Plenio, M. A. Rippin, and P. L. Knight, "Quantifying entanglement," Phys. Rev. Lett. 78, 2275 (1997). [CrossRef]
  31. V. Vedral and M. B. Plenio, "Entanglement measures and purification procedures," Phys. Rev. A 57, 1619 (1998). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited